Merkür (gezegen)

Merkür

Merkür (MESSENGERden çekilmiş)
Yörünge Özellikleri
Yarı büyük eksen 57.910.000 km.
0,387 A.Ü.
Günberi 46.000.000 km.
0,307 A.Ü.
Günöte 69.820.000 km.
0,467 A.Ü.
Yörünge dışmerkezliği 0,206
Yörünge eğikliği 7o
Dolanma süresi 87,97 gün
0,241 yıl
Kavuşum süresi 115,9 gün
Yörünge hızı
en yüksek
ortalama
en düşük

58,98 km/saniye
47,87 km/saniye
38,86 km/saniye
Gözlem Özellikleri
Görünür parlaklık
en yüksek
en düşük

-1,9
+2,6
Yer'e en yakın konumda
Yer'e Uzaklık 77.300.000 km.
0,52 A.Ü.
Görünür çap 13 ark saniye
Yer'e en uzak konumda
Yer'e Uzaklık 221.900.000 km.
1,48 A.Ü.
Görünür çap 4,5 ark saniye
Fiziksel Özellikler
Ekvator çapı 4879,4 km.
(0,38 x Yer)
Basıklık 0
Hacim 0,0562 x Yer
Kütle 0,0553 x Yer
Yoğunluk 5,43 g/cm3
(0,98 x Yer)
Eksen eğikliği 0o
Dönme süresi 58,65 gün
Yerçekimi 3,7 m/s2
(0,38 x Yer)
Kurtulma hızı 4,43 km/saniye
(0,39 x Yer)
Beyazlık
(albedo)
0,11
Yüzey sıcaklığı
en yüksek
ortalama
en düşük

730 K (457oC)
440 K (167oC)
100 K (-173oC)

Merkür (Utarit), Güneş sistemi'nin Güneş'e en yakın gezegenidir. Büyüklük açısından 8 gezegen arasında sekizinci sırayı alır. Adını Roma mitolojisinde ticaret ve yolculuk tanrısı ve tanrıların habercisi olarak bilinen Merkür'den alır. Çıplak gözle izlenebilen 5 gezegenden biri (diğerleri Venüs, Mars, Jüpiter ve Satürn) olarak eski çağlardan beri insanoğlunun dikkatini çekmiştir. Yer benzeri ya da 'kaya' yapılı gezegenler sınıfına girmektedir. Güneş'e yakınlığı nedeniyle yeryüzünden izlenmesi güçtür ve hakkında bilinenler sınırlıdır. Uydusu bulunmamaktadır.


Konu başlıkları

Yörünge

Merkür, Güneş'e uzaklığı yaklaşık 46 milyon ile 70 milyon kilometre arasında değişen oldukça eliptik bir yörünge izler. Plüton'dan sonra Güneş sistemi'nin gezegenleri arasında gözlenen en yüksek dışmerkezlik değerine sahip bu yörüngenin milyonlarca yıllık bir çevrim içinde zaman zaman daha da basıklaşarak dışmerkezlik derecesinin günümüzdeki 0,21'den 0,5 düzeyine dek yükselebildiği sanılmaktadır.

Tüm gezegenlerin yörüngelerinde gözlenen günberi noktasının yer değiştirme hareketinin, Merkür yörüngesi sözkonusu olduğunda klasik mekanik kuramının öngördüğünden daha hızlı olduğu fark edilmiştir. Bu farklılık Einstein'ın görelilik kuramı ile açıklanabilmiş ve bu kuramı destekleyen bulgulardan biri chg olarak kabul edilmiştir.

Fiziksel özellikler

Merkür ile Dünya'nın boyutlarının karşılaştırılması
Merkür ile Dünya'nın boyutlarının karşılaştırılması

Merkür, Güneş sistemi'nin iç gezegenler olarak adlandırılan diğer dört üyesi gibi katı bir yapıya sahiptir. 5,43 g/cm³ olan yoğunluğu Yer ile karşılaştırılabilecek denli yüksektir ve Yer'den sonra Güneş Sistemi'nde karşılaşılan en büyük değerdedir. Merkür Güneş'e yakınlığı nedeniyle güneş ışınlarının güçlü etkisi altındadır ve sıcak bir gezegendir. Yüzey ısısı uzun süren Merkür günü sırasında 450 °C üzerindeki düzeylere çıkabilirken, etkili bir atmosferin yokluğu nedeniyle gece -170 °C'ye kadar düşmektedir. Gezegenin koyu bir yüzeyi vardır. Yüzeyin 0,11 albedo değeri vardır, yani üzerine düşen güneş ışınlarının ancak yaklaşık onda birini yansıtır.

Yüzey şekilleri ve Merkür 'yerbilim'i

Merkür (Mariner 10 dan çekilmiş)
Merkür (Mariner 10 dan çekilmiş)

Merkür (Mariner 10 dan çekilmiş)Merkür yüzeyinin en dikkat çeken özelliği tüm gezegen üzerine dağılmış irili ufaklı çarpma kraterleridir. İlk bakışta Ay yüzeyine benzetilebilecek bu görünümün, daha dikkatli bir incelemede birçok farklılıklar içerdiği anlaşılır. Ay'da olduğu gibi kraterlerin yoğun bir şekilde iç içe geçtiği alanlar arasında, krater yoğunluğunun çok düşük olduğu, yumuşak engebeli geniş düzlükler yer alır. Bu bölgeler kraterlerin sık olduğu bölgelere göre daha alçakta yer alırlar ve Ay'daki 'deniz'lere benzer şekilde, büyük çarpmalar sonucunda gezegen içinden yüzeye çıkan lav akıntıları ile oluştukları sanılır. Gerek bu oluşumların, gerekse büyük kraterlerin çoğunun, Güneş Sistemi içinde büyük çarpışmaların sürdüğü 4,5 ile 3,8 milyar yıl öncesini kapsayan dönemde meydana geldiği düşünülür. 3,8 milyar yıl öncesinden günümüze kadar, Güneş Sistemi büyük çarpışmaların sıklığının azaldığı, nisbeten sakin bir döneme girmiştir. Merkür üzerindeki en büyük çarpışma izi, 1300 km. çapındaki Caloris Havzasıdır. Bu dev lav denizi 100 km. çapında bir gökcisminin çarpması ile gezegenin manto tabakasından yüzeye çıkan sıvılaşmış materyel ile oluşmuş, bu arada şok dalgalarının gezegen boyunca yayılarak diğer yüzünde odaklanması sonucunda Caloris Havzasının tam karşı kutbunda 500.000 km.2 lik bir alan son derece engebeli bir hal almıştır. Ayrıca düzlükler üzerinde yüzlerce kilometre uzunluğunda ve yüksekliği 2-3 km.yi bulan kırıklar dikkati çeker. Bunlara, gezegenin soğuması sırasında küçülen hacminin neden olduğu sanılmaktadır. Kırıkların bazı kraterlerin içinden de geçmeleri krater oluşum döneminden daha sonra meydana geldiklerini düşündürür. Gezegen yüzeyinin en dışta kalan birkaç metre kalınlığındaki kısmının, Ay yüzeyindekine benzer biçimde çok küçük göktaşlarının milyarlarca yıldır süren bombardımanı sonucunda ince bir toz haline gelmiş regolit tabakası olduğu varsayılır. Aynı Ay'da gözlendiği gibi az sayıdaki genç kraterin, ışınsal olarak kendilerini çevreleyen parlak beyaz çizgilerin ortasında yer aldığı görülür. Bu çizgiler, çarpma sırasında 'kirli' regolitin üzerine sıçrayan taze materyel ile ilişkilidir.

Yüzeyindeki Maddeler

Merkür'ün yüzeydeki kurtulma hızı gezegenin düşük kütlesi nedeniyle Yer'in ancak % 40'ı kadardır. Bu düzeydeki bir çekim gücü, gezegen yüzeyindeki 400 °C'yi aşan sıcaklıklar karşısında gazların uzaya kaçmasına engel olamayacak denli güçsüzdür. Bu nedenle Merkür'ün çoğunlukla orta ağırlıktaki elementler içeren (oksijen, sodyum, potasyum) son derece seyrek bir atmosferi bulunmaktadır. Bu atmosfer durağan olmaktan çok, Merkür'ün konumunda etkisi güçlü olan güneş rüzgarı ve yüksek yüzey ısıları nedeniyle gezegen yüzeyinden koparılan ve kısa sürede uzay boşluğuna kaybedilen atomlardan oluşmuş, sürekli yenilenen bir yapıdadır. Bu şekliyle, Merkür atmosferini Yer'in egzosferi ile karşılaştırmak olasıdır. En ilginç olanı ise merkürün yerçekimi kuvvetinden kurtulmak dünyadakinden daha kolaydır.

Manyetik Alanı

Merkür'ün küçük boyutuna oranla önemli sayılabilecek bir manyetik alanı bulunmaktadır. Ekseni Merkür'ün dönüş eksenine 11° eğimli, kutupları Yer'in manyetik kutuplarına göre ters yerleşmiş durumda, yani kuzey manyetik kutbu gezegenin coğrafi güney kutbuna komşu olan ve gezegen yüzeyinde Yer manyetik alanının % 1'i kadar güçlü bu alan, Merkür çevresinde küçük bir manyetosfer oluşturmaya yeterlidir. Manyetosfer, Güneş rüzgarı adı verilen ve güneş kökenli hızlı parçacıkların oluşturduğu plazma akımının, gezegenin manyetik alanın etkisi ile saptırılarak engellendiği bölgedir. Manyetosferin en dışında, plazma akımının yavaşlayarak hızının ses hızının altına indiği ve yön değiştirdiği bir şok dalgası gözlenir. Merkür'ün manyetik alanı güneş rüzgarı ile gelen parçacıkları yakalayıp gezegen çevresinde tutacak kadar güçlü olmadığı için, Van Allen kuşakları yoktur.

Küçük bir gezegen olan Merkür'ün çekirdek sıcaklığının bir manyetik alan oluşturmak için gerekli olan sıvı demir kütlesini barındırmaya izin vermeyecek kadar düşük olduğu düşünülmektedir. Bu nedenle, bugün gözlenen manyetik alanın gezegen içindeki aktif bir manyetik dinamo tarafından sağlanmak yerine, çok önceleri mıknatıslanmış olan katı haldeki çekirdek tarafından sürdürüldüğü görüşü ortaya atılmıştır.

Merkür'ün kendi ekseni etrafında dönüşü

Gözlem koşullarının güçlüğü, Merkür'ün teleskopla ayırdedilebilen yüzey yapılarının hareketlerine dayanarak dönüş periyodunun hesaplanmasını zorlaştırmıştır. 1960'lı yıllara gelinceye dek gezegenin kendi ekseni etrafında dönüşünün, Güneş çevresindeki hareketi ile 'kilitlenmiş' şekilde 88 günde tamamlandığına inanılıyordu. Gezegenin bir yüzünün sürekli karanlıkta kalarak çok düşük sıcaklıkta bulunması ile sonuçlanacak bu durum, 1962 yılında radyo gökbilim tekniklerinin Merkür'ün gece yüzünde sıcaklığın hiçbir zaman -160 °C'nin altına düşmediğini ortaya koyması ile tartışmalı hale geldi. 1965 yılında radar incelemeleri, gezegenin dönüş hızının yaklaşık 59 günlük bir devir ile uyumlu olduğunu gösterdi. İtalyan gökbilimci Giuseppe Colombo bu sürenin Merkür'ün yörünge periyodunun 2/3 ü kadar olduğuna dikkati çekerek, gezegenin alışılmamış bir dönüş-yörünge kilitlenmesi olabileceğini bildirdi. Bu, Mariner 10 uzay sondasının 1974 yılında Merkür'ü ziyareti sırasında doğrulandı. Bugün, Merkür'ün kendi etrafındaki dönüşünü 58,65 günde tamamladığı bilinmektedir. Yörünge ve dönüş periyodlarının bu şekilde 3:2 oranındaki senkronizasyonu, gezegenin oldukça eliptik yörüngesinin yol açtığı önemli yörünge hızı değişimleri ile daha uyumlu görülür. Bu şekilde, 1:1 oranındaki bir kilitlenmenin özellikle günberi dönemindeki hızlanma sırasında yol açacağı librasyon hareketleri ve buna bağlı güçlü gel-git etkileri ve iç gerilimler önlenmiş olmaktadır.

Merkür'ün bu dönüş biçimi ilginç sonuçlar doğurur. Gezegen kendi ekseni etrafında bir dönüşünü tamamladığı 58,65 günlük süre içinde Güneş çevresindeki dönüşünün de üçte ikisini gerçekleştirdiği için, güneşin görünür hareketi çok daha yavaş olmaktadır. Merkür'ün herhangi bir noktasında güneşin iki doğuşu arasında geçen süre dünya ölçülerine göre 176 gündür; diğer bir deyişle gezegenin bir günü iki yılına eşittir. Bunun yanı sıra aşırı eliptik yörünge nedeniyle değişen yörünge hızı, gezegenin güneş çevresindeki açısal hızının bazen kendi etrafındaki açısal hızı aşmasına, yani güneşin görünür hareketinin ters yöne dönmesine yol açar; gezegenin bu eliptik çizgi üzerinde güneşe yaklaşıp uzaklaşmasıyla güneşin görünür boyutunun da değişmesi tabloya eklendiğinde Merkür üzerinde geçen bir günün öyküsü iyice renklenir:

Caloris Havzası, güneşin meridyenden yani öğle noktasından geçişi ile günberi geçişinin aynı zamana geldiği bir konumdadır. Merkür'ün her iki yılında bir, bu bölge öğle ile yaz ortasını bir arada yaşayarak gezegenin (ve Güneş Sistemi'nin) en sıcak yeri olur. Caloris Havzası'ndaki bir gözlemci güneşin doğudan yükseldikçe büyüdüğünü ve doğudan batıya doğru hareketinin yavaşladığını görür. Güneş en yüksek noktayı geçtikten ve alçalmaya başladıktan kısa bir süre sonra durur ve geriye doğru hareket etmeye başlar. En yüksek noktadan bu kez ters yönde ikinci geçişinde en büyük görünür çapa ulaşır ve batıdan doğuya alçalırken yeniden küçülmeye başlar. Bir süre sonra tekrar yavaşlayarak durur ve doğudan batıya alışılmış hareketine döner. Batı-doğu doğrultusundaki bu geriye hareket dünya ölçüleriyle birkaç gün sürmüştür. Güneş öğle çizgisinden üçüncü kez geçer ve batıya doğru alçalırken küçülmeye devam eder. Güneş battığında bir Merkür yılı dolmuştur. İkinci yıl Caloris Havzasının gecesi boyunca geçer, güneş doğudan yükselmeye başladığında yeni bir yıla girilmiştir.

Caloris Havzasının 90 derece doğusunda bulunan bir gözlemci için gün çok farklı başlar. Büyük ve sıcak bir güneş doğudan yavaşça yükselmeye başlar, ancak bir süre sonra durarak yeniden alçalır, batarken en büyük çapa ulaşır, dünya ölçüleriyle 2 gün sonra tekrar doğar ve yükseldikçe görünür büyüklüğünün azaldığı gözlenir. Öğle çizgisinden geçerken en küçük halini almıştır, batıya doğru alçaldıkça tekrar büyümeye başlar. Batıdan battıktan kısa bir süre sonra aynı noktadan tekrar en büyük şekliyle doğduğu gözlenir, batı ufkundan bir süre yükseldikten sonra yeniden alçalır ve bir Merkür yılı boyunca görünmemek üzere batar

Merkür'ün tanınmasının tarihçesi

  • Eski çağlardan günümüze ulaşan kaynaklarda Merkür Ay, Güneş, Venüs, Mars, Jüpiter, ve Satürn ile birlikte, görünür hareketlerinin diğer yıldızlardan farklılığıyla tanınan 7 gökcisminden biri olarak gösterilir. Bu yönüyle, antik gökbilim için olduğu kadar astroloji açısından da önem taşıyan gezegen, birçok dilde haftanın yedi gününe adını veren gökcisimlerinden biri olarak, tarihöncesinden günümüze insan kültüründe yerini korumuştur. Eski Yunan'da sabah yıldızı olarak görüldüğünde Hermes, akşam yıldızı olarak görüldüğünde ise Apollo olmak üzere iki ayrı ad taşımaktaydı. Pisagor sayesinde bu iki yıldızın aslında aynı gökcismi olduğunu öğrenen ilkçağ dünyası, Merkür ve Venüs'ün Güneş çevresinde döndüğünü ileri süren Heraklit ile ilk kez güneşmerkezli görüş ile tanıştı. Romalılar ise gezegene Hermes'in Roma mitolojisindeki eşdeğeri olan ayakları kanatlı haberci tanrı Merkür'ün adını verirken büyük olasılıkla Merkür'ün sabah ufku ile akşam ufku arasındaki hızlı geçişlerinden etkilenmişlerdi.
  • 1639'da İtalyan gökbilimci Giovanni Battista Zupi basit bir teleskop yardımı ile Merkür'ün evreleri olduğunu farketti. Gezegenin Güneş etrafında döndüğünü bildirdi.
  • 1880'lerde İtalyan gökbilimci Giovanni Schiaparelli atmosferin olumsuz etkilerini en aza indirebilmek amacıyla, Merkür'ün gökyüzünde yüksekte bulunduğu gündüz saatlerinde teleskopla yaptığı gözlemlerle, Merkür yüzeyindeki koyu ve açık renkli bölgeleri gösteren ilk 'albedo haritası'nı çizdi ve Merkür'ün dolanma süresi ile kendi etrafında dönme süresinin eşit olduğunu iddia etti.
  • Yunan asıllı ve Türkiye doğumlu Fransız gökbilimci Eugène Michel Antoniadi 1934 yılında yayınladığı kitabında Merkür'ün o zamana kadar yapılmış en ayrıntılı albedo haritasını sundu ve gezegenin dikkate değer bir atmosferi bulunduğunu öne sürdü.
  • 1962 yılında Michigan Üniversitesinden W.E. Howard, gezegenin kızılötesi ve radyo ışınımları ölçümlerine dayanarak Merkür'ün gece yüzünün hiçbir zaman güneş ışığı almayan bir yüzeyden beklendiği kadar soğuk olmadığını, bu nedenle 88 günlük dönüş süresi iddialarının akla yakın olmadığını ileri sürdü.
  • 1965'te Gordon H. Pettengil ve Rolff B. Dyce Porto Rico'daki Arecibo radyoteleskopu yardımıyla yaptıkları radar incelemeleri ile gezegenden yansıyan ışınların Doppler kaymasını ölçerek Merkür'ün kendi ekseni etrafındaki dönüşünü yaklaşık 59 günde tamamladığını hesapladılar. Bu bulgu üzerine İtalyan bilim adamı Giuseppe Colombo bugün kabul edilen 3:2 yörünge-dönüş senkronizasyonu görüşünü ortaya attı.
  • 1991 yılında Arecibo radyoteleskopundan yapılan radar gözlemlerinde gezegenin kutup bölgelerinde donmuş halde su bulunabileceğini düşündüren bulgular elde edildi.

Mariner 10 uzay sondası

Bugüne dek Merkür'e gönderilen tek uzay aracı 1973 yılında fırlatılan Mariner 10 uzay sondasıdır. Sonda, Şubat 1974'te Venüs yakın geçişini gerçekleştirdikten ve gezegenle ilgili bilimsel gözlemler yaptıktan sonra, Güneş çevresinde Merkür yörüngesi ile kesişen ve yörünge dönemi Merkür'ün periyodunun tam iki katı olan eliptik bir yörüngeye girerek bu çizgi üzerinde her 176 günde bir Merkür'le karşılaşmaya başladı. 29 Mart 1974, 21 Eylül 1974 ve 16 Mart 1974 tarihlerinde gerçekleşen üç yakın geçişte gezegen hakkında çok değerli bilgiler elde edildi:

  • Merkür'ün kütlesi, çapı, dönüş süresi duyarlı olarak ölçüldü.
  • Gezegenin daha önce bilinmeyen manyetosferi keşfedildi, ince atmosferi hakkında veriler toplandı.
  • Ayrıntılı fotoğraflar çekildi, gezegenin yüzey haritası çıkarıldı. Ancak sondanın her geçişinde Merkür aynı konumda bulunduğundan, yüzeyin ancak yarıya yakın bölümü haritalanabildi.

Üçüncü geçişte gezegene 327 km. yaklaşan sonda, bu geçişten kısa bir süre sonra yakıtının bitmesi ile görevini sonlandırdı. 1975 yılından bu yana bağlantı kurulamayan Mariner 10, sabit yörüngesinde her iki Merkür yılında bir gezegenle aynı noktada buluşmaya devam etmektedir.

MESSENGER uzay sondası

Yer'den Merkür'e gönderilen uzay araçları, gezegenin Güneş'e yakın konumu nedeniyle, gezegen çevresinde yörüngeye girebilmek için çok yüksek enerjiye gereksinim duymaktadır. Bu nedenle, Mariner 10 programında, gözlemler için çok az zaman tanıyan hızlı yakın geçişler ile yetinmek zorunda kalınmıştır.

1980'lerin sonlarına doğru NASA bilim adamlarından Chen-Wan Yen, bir uzay sondasını Merkür çevresinde yörüngeye sokmaya olanak tanıyabilecek ekonomik uçuş yolları tasarladı. MESSENGER bu plan üzerine kurulmuş karmaşık ve uzun bir rota izleyerek Mart 2011'de Merkür etrafında yörüngeye girmek üzere, 3 Ağustos 2004'te fırlatıldı. Gelişmiş bilimsel aygıtlarla donatılan sonda, yörüngeye girmeye uygun bir açı ve hız elde edebilmek için gerekli kütleçekim yardım manevralarını 1 kez Yer, 2 kez Venüs ve 3 kez de Merkür yakın geçişi ile gerçekleştirecektir. 1 yıl sürmesi planlanan yörünge etkinlikleri şu konular üzerinde yoğunlaşacaktır:

  • Merkür'ün tüm yüzeyinin yüksek çözünürlüklü (250 metre/piksel) görüntülerinin elde edilmesi
  • En azından gezegenin bir bölümünün topografik haritasının çıkarılması
  • Yüzey bileşenlerinin gezegen üzerinde dağılımı
  • Çekim alanının ayrıntılı haritası
  • Manyetik alanın 3-boyutlu modeli
  • Çeşitli elementlerin yüksekliğe göre dağılımı
  • Kutuplarda kraterlerin güneş almayan alanlarında korunmuş uçucu bileşenlerin araştırılması

BepiColombo programı [değiştir]

ESA (Avrupa Uzay Ajansı) tarafından 2012 yılında fırlatılması planlanan ve Merkür'ün kendi ekseni etrafında dönüşünü aydınlatan Giuseppe Colombo'nun onuruna adlandırılan BepiColombo uzay aracı iki ayrı sondadan oluşacaktır. Merkür çevresinde iki değişik yörüngeye oturtulması planlanan sondalardan birinin gezegenin manyetosferi, diğerinin ise yüzey ve atmosferi ile ilgili gözlemler yapması öngörülmektedir.

Adlandırma

Uluslararası Gökbilim Birliği (IAU), Merkür üzerindeki yüzey şekillerine verilen adların belli kurallara göre seçilmesini önermektedir:

  • Kraterler: Ölmüş sanatçıların (besteci (örnek: Vivaldi, ressam, yazar) adları
  • Dağlar: 'Caloris' (Latince 'sıcak' sözcüğünden)
  • Sırtlar: Merkür araştırmalarına katkıda bulunmuş ölmüş bilim adamları
  • Ovalar: Merkür gezegeninin veya tanrı Merkür'ün çeşitli dillerde adları
  • Uçurumlar: Keşiflerde veya bilimsel araştırmalarda kullanılan ünlü gemilerin adları
  • Vadiler: Radyoteleskop adları

Gözlem koşulları

Merkür, Güneş çevresinde yaklaşık 88 gün süren dolanma süresi ve 116 günlük kavuşum dönemi ile, gökyüzündeki görünür hareketini yılda üç kez yineler. Bir alt gezegen olması nedeniyle ile her zaman Güneş'e yakın konumdadır ve gözlenmesi Güneş'in parlak ışığı nedeniyle oldukça güçtür. -1,9 kadir derecesine varabilen parlaklığı ile en parlak yıldızlardan ve bazen Satürn, Mars ve hatta Jüpiter'den daha ışıklı olabilmesine karşın hiçbir zaman karanlık bir zemin üzerinde izlenemediği için, her kavuşum döneminin en fazla birkaç gün süren bir kısmında, en yüksek batı ya da doğu uzanımı esnasında çıplak gözle görülebilir. Bu gözlem koşulları, doğu uzanımı için güneşin batışını izleyen, batı uzanımı için ise güneşin doğuşundan az önceki kısa bir süre için gerçekleşir. Bu nedenle her 116 günlük dönemde Merkür bir kez 'akşam yıldızı', bir kez de 'sabah yıldızı' olarak izlenir. En yüksek uzanım, yörünge dışmerkezliğinin yüksek olması nedeniyle 18° ile 28° arasında değişir, ancak 28° bile rahat bir gözlem için yeterli değildir. Özellikle tutulum düzleminin ufka daha yakın olduğu yüksek enlemlerden gezegenin görülmesi çok zordur. Gözlem noktası Yer ekvatoruna yaklaştıkça Merkür'ün sabah ya da akşam alacakaranlığında ufuktan yüksekliği artacağı için çıplak gözle görülebilmesi daha kolay olur. Merkür'ün oldukça eliptik yörüngesinin uzun ekseninin Yer yörüngesine göre konumuna bağlı olarak, dünyanın güney yarıküresinin sonbahar başlangıcına denk gelen döneminde, gezegenin olası en yüksek batı uzanımı ile 7°'lik yörünge eğikliğinin üst üste gelmesi sayesinde Merkür için en uygun gözlem koşulları oluşur. Aynı şekilde olası en yüksek doğu uzanımı ile yörünge eğikliği açısının birbiri üzerine eklenmesi, yine güney yarıküreden bu kez kış aylarında gezegenin rahat gözlenmesine olanak sağlar. Yüksek dışmerkezlik nedeniyle yörünge hızı dolanma sırasında çok değişir ve kavuşum süresi Yer'in Merkür yörüngesine oranla konumuna göre birkaç gün kayabilir.

Yer atmosferinin olumsuz etkilerini en aza indirebilmek amacıyla, teleskop kullanılarak yapılan profesyonel gözlemler Merkür'ün ufuktan iyice yüksekte bulunduğu gün ortası saatlerinde gerçekleştirilir. Tam güneş tutulmaları çok kısa süre için de olsa güneşe çok yakın konumdaki gezegenin gün ortasında çıplak gözle izlenebilmesine olanak sağlar.

Kısıtlayıcı etmenler nedeniyle, yeryüzünden yapılan gözlemler en güçlü teleskoplar kullanıldığında dahi Merkür'ün yüzey şekilleri hakkında yeterli bilgi sağlayamamış ve elimizdeki bilgilerin büyük kısmı Mariner 10 uzay sondası tarafından sağlananlarla sınırlı kalmıştır.

Evreler

Bir teleskopla izlendiğinde Merkür'ün Ay ve Venüs gibi evreleri olduğu görülür. Gezegenin yeryüzüne en uzak ve Güneş'in arkasında bulunduğu üst kavuşum anında görünen yüzeyinin tümü aydınlandığından ışıklı bir daire şeklinde 'dolun' evresi söz konusudur. Bu aynı zamanda uzaklık nedeniyle Merkür'ün görünür çapının en az olduğu dönemdir. En iyi gözlem koşullarının oluştuğu en yüksek uzanım anında gezegen bir yarımdaire şeklinde görülür. Güneş ile Yer arasında kaldığı dönemlerde ise karanlık yüzünü göstererek bir 'hilal' şekli alır. Hilalin en ince olduğu dönemler gezegenin dünyaya en yakın olduğu ve görünür çapının en büyük olduğu dönemlerdir, ancak bu esnada güneş ışınları gezegenin görülmesini engeller.

Merkür'ün Güneş geçişleri

Merkür her yıl ortalama:) üç kez alt kavuşum konumundan geçtiği halde, yörüngesinin tutulum düzlemine 7 derecelik bir açı yapması nedeniyle güneş diskinin önünden geçişi nadiren gerçekleşir. Merkür yörüngesinin tutulum düzlemini kestiği noktalar, yani yörüngenin çıkan ve inen düğümleri ile Güneş ve Yer'in düz bir çizgi üzerinde yer almasını gerektiren bu durum her yüzyılda 12-14 kez ve yalnız Mayıs ve Kasım ayları içinde gözlenir. Güneş diski üzerinde küçük bir siyah beneğin ilerlemesi şeklinde izlenen bu olay, Merkür'ün yörünge hızının daha düşük olduğu günöte noktasına daha yakın olan Mayıs geçişlerinde daha yavaş olur ve 9 saat kadar sürebilir.

Venüs (gezegen)

Venüs

Venüs'ün görünür ışıktaki bir fotoğrafı
Yörünge Özellikleri
Yarı büyük eksen 108.210.000 km.
0,723 A.Ü.
Günberi 107.480.000 km.
0,718 A.Ü.
Günöte 108.940.000 km.
0,728 A.Ü.
Yörünge dışmerkezliği 0,006
Yörünge eğikliği 3,39o
Dolanma süresi 224,7 gün
0,615 yıl
Kavuşum süresi 583,92 gün
Yörünge hızı
ortalama
35,02 km/saniye
Gözlem Özellikleri
Görünür parlaklık
en yüksek
en düşük

-4,4
-3,3
Yer'e en yakın konumda
38.200.000 km.
0,25 A.Ü.
Görünür çap 66 ark saniye
Yer'e en uzak konumda
Yer'e Uzaklık 261.000.000 km.
1,74 A.Ü.
Görünür çap 9,7 ark saniye
Fiziksel Özellikler
Ekvator çapı 12103,6 km.
(0,95 x Yer)
Basıklık 0
Hacim 0,086 x Yer
Kütle 0,0815 x Yer
Yoğunluk 5,24 g/cm3
(0,95 x Yer)
Eksen eğikliği 177,36o (ters dönüş)
Dönme süresi -243 gün (ters yönde)
Yerçekimi 8,87 m/s2
(0,91 x Yer)
Kurtulma hızı 10,36 km/saniye
(0,93 x Yer)
Beyazlık
(albedo)
0,65
Yüzey sıcaklığı
ortalama
737 K (464oC)

Venüsya da Çoban Yıldızı, Güneş sisteminde, Güneşe uzaklık bakımından ikinci sıradaki gezegen. Ayrıca Zühre, eski Türkler'de Gök Göbeği, Çivi, Gök Çivisi, Kırgızlar'da Demirkazık, Moğol ve Tunguzlar'da Altın Direk, Roma Astrolojisi'nde Lucifer isimleriyle bilinir. Eski Roma tanrıçası Venüs (Eski Yunan Mitolojisi'nde Afrodit) adını bu gezegenden almıştır. Halk arasında Çolpan veya Çoban Yıldızı olarak da bilinir. Kendi ekseni etrafında, Güneş sistemindeki diğer tüm gezegenlerin aksi istikamette döner. Venüs saat yönünde dönen tek gezegendir.

Büyüklüğü açısından Dünya ile benzerlik gösterdiğinden Dünya ile kardeş gezegen olarak da bilinmektedir. Gökyüzünde Güneş'e yakın konumda bulunduğundan ve yörünges Dünya'nınkine göre Güneş'e daha yakın olduğundan yeryüzünden sadece Güneş doğmadan önce veya battıktan sonra görülebilir. Bu yüzden Venüs Akşam Yıldızı, Sabah Yıldızı veya Tan Yıldızı olarak da isimlendirilir. Bir diğer adı da 'Çoban yıldızı'dır. Görülebildiği zamanlar, gökyüzündeki en parlak cisim olarak dikkat çeker.

Konu başlıkları

Venüs'ün tanınmasının tarihçesi [değiştir]

Venüs Ay, Güneş, Merkür, Mars, Jüpiter, ve Satürn ile birlikte, görünür hareketlerinin diğer yıldızlardan farklılığıyla tanınan 7 gökcisminden biri olarak gösterilir. Bu yönüyle, antik gökbilim için olduğu kadar astroloji açısından da önem taşıyan gezegen, birçok dilde haftanın yedi gününe adını veren gökcisimlerinden biri olarak, tarihöncesinden günümüze insan kültüründe yerini korumuştur. Günümüze ulaşan en eski gökbilimsel belge olan ve M.Ö. 7.ci yüzyıla ait olduğu sanılan Ammisaduqa tabletinde Babillilerin M.Ö. 1700-1400 yılları arasında yaptıkları Venüs gözlemlerinden söz edilir. Eski Mezopotamya, Orta Amerika ve Uzak Doğu kültürlerinde Venüs'ün önemli bir yeri olmuştur. Eski Yunan'da sabah yıldızı olarak görüldüğünde 'Phosphorus', akşam yıldızı olarak görüldüğünde ise 'Hesperus' olmak üzere iki ayrı ad taşımaktaydı. Pisagor sayesinde bu iki yıldızın aslında aynı gökcismi olduğunu öğrenen ilkçağ dünyası, Venüs ve Merkür'ün Güneş çevresinde döndüğünü ileri süren Heraklit ile ilk kez güneşmerkezli görüş ile tanıştı.

  • 1610'da İtalyan gökbilimci Galileo Galilei basit bir teleskop yardımı ile Venüs'ün evreleri olduğunu farketti. Daha sonraki gözlemlerinde gezegenin evrelerindeki değişikliklere paralel olarak görünür boyutunun da değiştiğini gözleyen Galilei, bu bulguları gezegenin Güneş etrafında döndüğünün kuvvetli göstergeleri olarak kabul etti.
  • 1761'de Rus gökbilimci Mikhail Vasilyeviç Lomonosov, Venüs'ün Güneş geçişi sırasında gezegenin kenar çizgisindeki düzensizliği farkederek bunun bir atmosferin varlığını gösterdiğini öne sürdü.
  • 1793'te, Alman gökbilimci Johann Schröter sonradan kendi adıyla anılacak ve Venüs atmosferinin neden olduğu anlaşılacak olan 'faz kayması' olayını gözledi. Bu olay, güneş ışınları ile aydınlanan kalın ve yoğun atmosferin Venüs'ün görünür kenar çizgisine eklenerek, bulunduğu konumun gerektirdiğinden farklı bir evredeymiş gibi algılanmasına neden olması sonucu ortaya çıkar.
  • 1932 yılında, Amerikalı araştırmacılar W.S. Adams ve T. Dunham kızılötesi tayfölçüm ile Venüs atmosferinin temel bileşeninin karbon dioksit olduğunu öğrendiler. İzleyen yıllarda Rupert Wildt, tayfölçüm verilerine dayanarak atmosferin kimyasal bileşimi yanı sıra basıncı, sıcaklığı, gezegen yüzeyiyle etkileşimi hakkında birçok tahminde bulundu.
  • 1956'da Robert S. Richardson gezegenden yansıyan güneş ışınlarının Doppler kaymasını ölçtüğünde, bulguların gezegenin kendi etrafında dönüş yönünün ters olduğunu gösterdiğini saptadı.
  • 1960'larda Massachusetts Teknoloji Enstitüsü (M.I.T.) ve Kaliforniya Teknoloji Enstitüsü bilim adamları mikrodalga bandında radar incelemeleri ile Venüs'ün kendi etrafında dönüş süresini duyarlı olarak ölçtüler. Aynı dönemde yeryüzünden yapılan radar incelemeleri ile gezegenin yüzey şekilleri hakkında önemli bilgi elde edildi.

Venüs'e gönderilen uzay araçları

Venüs'ün morötesi ışıkta çekilmiş bir fotoğrafı
Venüs'ün morötesi ışıkta çekilmiş bir fotoğrafı

*Sputnik 7 (S.S.C.B): 4 Şubat 1961'de fırlatıldı. Başarısız. (Yer yörüngesinden ayrılamadı)

  • Venera 1 (S.S.C.B): 12 Şubat 1961'de fırlatıldı. Başarısız. (Venüs'e ulaşamadan iletişim koptu. Şu anda Güneş çevresinde yörüngede)
  • Mariner 1 (A.B.D.): 22 Temmuz 1962'de fırlatıldı. Başarısız. (Fırlatılmadan hemen sonra kontroldan çıkması üzerine imha edildi)
  • Sputnik 19 (1962AlphaPi1) (S.S.C.B): 25 Ağustos 1962'de fırlatıldı. Başarısız. (Yer yörüngesinden ayrılma aşamasında son kademe arızalandı. 3 gün sonra Yer atmosferine girerek parçalandı.)
  • Mariner 2 (A.B.D.): 27 Ağustos 1962'de fırlatıldı. İlk başarılı Venüs sondası. 201 kg. ağırlığında. 14 Aralık 1962'de gezegenin 35.000 km. yakınından geçti. 42 dakika süren bilimsel gözlemleri ile Venüs hakkında bilinenlere önemli yenilikler ekledi. Venüs yüzeyinin 425oC' den sıcak olduğunu, bulut tepelerinde ise sıcaklığın düşük olduğunu saptadı. Böylece gezegen yüzeyindeki koşullarda sera etkisinin payı anlaşıldı. Gezegenin manyetik alanı bulunmadığını gösterdi. Ayrıca Venüs'e doğru yolculuğu sırasında ilk kez güneş rüzgarını inceledi, güneş patlamaları kaynaklı yüksek enerjili yüklü parçacıklar ve kozmik ışınlar ile ilgili ölçümler yaptı, gezegenler arası toz miktarının sanılandan daha az olduğunun anlaşılmasını sağladı. Şu anda Güneş çevresinde yörüngede.
  • Sputnik 20 (1962 AlphaTau1) (S.S.C.B): 1 Eylül 1962'de fırlatıldı. Başarısız. (Yer yörüngesinden ayrılamadı. 5 gün sonra Yer atmosferine girerek parçalandı.)
  • Sputnik 21 (1962 APi) (S.S.C.B): 12 Eylül 1962'de fırlatıldı. Başarısız. (Yer yörüngesinde iken infilak ederek parçalandı.)
  • Kosmos 21 (S.S.C.B): 11 Kasım 1963'te fırlatıldı. Başarısız. (Yer yörüngesinden ayrılamadı. 3 gün sonra Yer atmosferine girerek parçalandı). Bu aracın bir Venüs sondası olduğu yalnızca bir tahmindir. Daha sonraki Venüs uçuşlarına hazırlık amaçlı bir test uçuşu da olabilir.
  • Kosmos 27 (S.S.C.B): 27 Mart 1964'te fırlatıldı. Başarısız. (Yer yörüngesinden ayrılamadı.)
  • Zond 1 (S.S.C.B): 4 Nisan 1964'te fırlatıldı. Başarısız. (Venüs'e ulaşamadan radyo sistemi arızalandı). Şu anda Güneş çevresinde yörüngede.
  • Venera 2 (S.S.C.B): 12 Kasım 1965'te fırlatıldı. Başarısız. (Venüs'e varmak üzere iken iletişim kesildi). Şu anda Güneş çevresinde yörüngede.
  • Venera 3 (S.S.C.B): 16 Kasım 1965'te fırlatıldı. Başarısız. (Venüs atmosferine girmekte iken iletişim kesildi. Venüs üzerine çarparak parçalandı.) Bir başka gezegen üzerinde bulunan en eski insan yapımı nesnedir.
  • Kosmos 96 (S.S.C.B): 23 Kasım 1965'te fırlatıldı. Başarısız. (Yer yörüngesinden ayrılma için ateşleme sırasında oluşan bir patlama ile hasar gördü. 16 gün sonra Yer atmosferine girerek parçalandı.)
  • Venera 4 (S.S.C.B): 12 Haziran 1967'de fırlatıldı. Venüs atmosferinden veri gönderen ilk uzay aracı. 1106 kg. ağırlığında. 18 Ekim 1967'de Venüs atmosferine girdi, bir paraşüt sistemi ile yavaşlarken yanında taşımakta olduğu 2 termometre, bir barometre, bir radyo altimetre, bir atmosfer yoğunluğu ölçme cihazı, 11 gaz analiz cihazını düşüşe bıraktı ve bu cihazlardan gelen verileri yeryüzüne aktardı. Sondanın kendisi ise hidrojen ve oksijen algılayıcıları, kozmik ışın algılayıcısı yüklü parçacık algılayıcısı ve bir manyetometre taşımaktaydı. 25 km. yükseklikte atmosferin yüksek sıcaklık ve basıncına dayanamayarak tahrip oldu. Atmosferin bileşimi ve ulaştığı yükseltiye kadar olan kısmına ait fizik verileri gönderdi. Bu şekilde ilk gezegenler arası yayını gerçekleştirmiş oldu.
  • Mariner 5(A.B.D.): 14 Haziran 1967'de fırlatıldı. 19 Ekim 1967'de Venüs yüzeyinin 4000 km. uzağından geçti. Gezegenler arası ortamda ve Venüs yakınlarında manyetik alan, yüklü parçacıklar, plazma ölçümleri yaptı; Venüs atmosferinin radyo ve morötesi bandında ışınımlarını taradı. Şu anda Güneş çevresinde yörüngede.
Venüs ile Dünya'nın boyutsal karşılaştırması
Venüs ile Dünya'nın boyutsal karşılaştırması
  • Kosmos 167 (S.S.C.B): 17 Haziran 1967'de fırlatıldı. Başarısız. (Venera 4'e benzer şekilde tasarlanmış olan ve Venüs üzerine inmesi planlanan bu araç Yer yörüngesinden ayrılamadı ve 8 gün sonra Yer atmosferine girerek parçalandı.)
  • Venera 5 (S.S.C.B): 5 Ocak 1969'da fırlatıldı. 16 Mayıs 1969'da Venüs atmosferine girdi. Venera 4'e benzer şekilde tasarlanmış 405 kg. ağırlığındaki sonda, bir paraşüt sistemi ile yavaşlarken 53 dakika süreyle atmosfer hakkında veriler toplayıp gönderdi. Gezegen yüzeyine varamadan, atmosferin yüksek sıcaklık ve basıncına dayanamayarak tahrip oldu. Atmosferin bileşimi ve sondanın inebildiği 38 km. yükseltiye kadar olan kısmına ait fizik verileri gönderdi.
  • Venera 6 (S.S.C.B): 10 Ocak 1969'da fırlatıldı. 17 Mayıs 1969'da Venüs atmosferine girdi. Venera 4'e benzer şekilde tasarlanmış 405 kg. ağırlığındaki sonda, bir paraşüt sistemi ile yavaşlarken 51 dakika süreyle atmosfer hakkında veriler toplayıp gönderdi. Gezegen yüzeyine varamadan, atmosferin yüksek sıcaklık ve basıncına dayanamayarak tahrip oldu. Atmosferin bileşimi ve sondanın inebildiği 36 km. yükseltiye kadar olan kısmına ait fizik verileri gönderdi.
  • Venera 7 (S.S.C.B): 17 Ağustos 1970'de fırlatıldı. 15 Aralık 1970'de Venüs atmosferine girdi. 495 kg ağırlığındaki iniş sondası bir paraşüt arızası nedeniyle 60 dakika sürmesi gereken inişini 35 dakikada tamamlayarak Venüs yüzeyine indi ve buradan 23 dakika süreyle sinyaller gönderdi. Gezegen yüzeyinde atmosfer sıcaklığının 475oC, basıncın ise 90 atmosfer olduğunu saptadı. Böylece bir başka gezegenin yüzeyine çalışır durumda inen ve radyo yayınları yeryüzüne veri gönderen ilk uzay aracı oldu.
  • Kosmos 359 (S.S.C.B): 22 Ağustos 1970'de fırlatıldı. Başarısız. (Yer yörüngesinden ayrılamadı.)
  • Venera 8 (S.S.C.B): 27 Mart 1972'de fırlatıldı. 22 Temmuz 1972'de Venüs atmosferine girdi. Bir paraşüt sistemi yardımı ile inişi sırasında atmosfer hakkında veriler topladı. Değişik yükseltilerdeki rüzgar hızını ve ışık şiddetini ölçtü. Sert atmosfer koşullarında görev süresini uzatabilmek amacıyla bir dış soğutma sisteminden yararlandı ve yüzeye inişinden sonra 50 dakika süreyle veri gönderebildi. Gezegen yüzeyinde aydınlığın fotoğraf çekilebilmesine olanak tanıyacak düzeyde olduğunu saptadı.
  • Kosmos 482 (S.S.C.B): 31 Mart 1972'de fırlatıldı. Başarısız. (Yer yörüngesinden ayrılamadı.)
  • Mariner 10 (A.B.D.): 3 Kasım 1973'te fırlatıldı. 5 Şubat 1974'te, daha sonraki Merkür buluşması için uygun rotayı sağlayacak şekilde Venüs yakın geçişini gerçekleştirdi. Gezegen yüzeyinin 5800 km. üzerinden geçerken, çok sayıda fotoğraf çekti, Venüs'ün ilk kez mor ötesi bantta görüntülerini elde etti ve bu sayede daha önce bilinmeyen atmosfer akımlarını tanımladı, Venüs'ün dikkate değer bir manyetik alanının bulunmadığını, ancak iyonosfer ile güneş rüzgarının bir şok dalgası oluşturacak şekilde etkileştiklerini gözledi. Venüs atmosferinde hidrojen bulunduğunu ve izotop dağılımına dayanarak bu hidrojenin Güneş kaynaklı olduğunu saptadı. Atmosferin radyo dalgalarını örtme biçimini inceleyerek Venüs bulutlarının en yoğun oldukları yükseklikleri hesapladı.

Mariner 10, Merkür gezegenine doğru yolculuğuna devam ederek bu gezegeni ziyaret eden ilk ve tek uzay aracı oldu. Yörünge değişikliği amacıyla bir gezegenin kütleçekim yardımından yararlanan, ve aynı zamanda ard arda iki gezegeni başarı ile ziyaret eden ilk uzay sondası olma özelliğini kazandı. Şu anda Güneş çevresinde yörüngede dolanmaktadır.

  • Venera 9 (S.S.C.B): 8 Haziran 1975'te fırlatıldı. Bir yörünge aracı ve bir iniş aracı olmak üzere iki ayrı sondadan oluşmakta idi. 20 Ekim 1975'te iki araç birbirinden ayrıldı. 22 Ekim tarihinde yörünge aracı Venüs çevresinde 48 saat dolanma süreli bir yörüngeye girerken, 2015 kg. ağırlığındaki iniş aracı da, bir sürtünme ve ısı kalkanı, üç ayrı paraşüt sistemi yardımı ile inişe geçti. 2300 kg ağırlığındaki yörünge aracı mor ötesi, görünür bant, kızıl ötesi ve mikrodalga bantlarında incelemeler yapabilecek donanıma sahipti, ayrıca iniş cihazının iniş sırasında ve gezegen yüzeyinde elde ettiği verileri dünyaya aktaracak bir bağlantı istasyonu olarak tasarlanmıştı. Sert atmosfer koşullarında görev süresini uzatabilmek amacıyla bir dış soğutma sistemine sahip olan iniş aracı, 60-30 km. düzeyleri arasında bulutlar bulunduğunu gözledi, atmosferde düşük oranda bulunan hidroklorik asit, hidrofluorik asit, iyot ve bromu saptadı. Yüzeye inişinden sonra 53 dakika süreyle veri gönderebildi. Taşıdığı televizyon kamerası yardımıyla Venüs yüzeyinin ilk fotoğraflarını yeryüzüne iletti. Resimlerde aşınma belirtisi göstermeyen keskin kenarlı kayalar, berrak bir atmosfer gözlendi. Venera 9 yörünge aracı şu anda Venüs çevresinde yörüngededir.
  • Venera 10 (S.S.C.B): 14 Haziran 1975'te fırlatıldı. Venera 9'a benzer şekilde, bir yörünge aracı ve bir iniş aracı olmak üzere iki ayrı sondadan oluşmakta idi. 23 Ekim 1975'te iki araç birbirinden ayrıldı. 25 Ekim tarihinde yörünge aracı Venüs çevresinde 49,5 saat dolanma süreli bir yörüngeye girerken, 2015 kg. ağırlığındaki iniş aracı da, bir sürtünme ve ısı kalkanı, üç ayrı paraşüt sistemi yardımı ile inişe geçti. 2300 kg ağırlığındaki yörünge aracı mor ötesi, görünür bant, kızıl ötesi ve mikrodalga bantlarında incelemeler yapabilecek donanıma, bir manyetometreye ve bir yüklü parçacık sayacına sahipti, ayrıca iniş aracının iniş sırasında ve gezegen yüzeyinde elde ettiği verileri dünyaya aktaracak bir bağlantı istasyonu olarak tasarlanmıştı. Sert atmosfer koşullarında görev süresini uzatabilmek amacıyla bir dış soğutma sistemine sahip olan iniş aracı, atmosferin fizik özellikleri üzerinde ölçümler yaptı. Yüzeye inişinden sonra 65 dakika süreyle veri gönderebildi. Taşıdığı televizyon kamerası yardımıyla Venüs yüzeyinin fotoğraflarını yeryüzüne iletti. Venera 10 yörünge aracı şu anda Venüs çevresinde yörüngededir.
  • Pioneer Venus 1 (Pioneer 12) (A.B.D.): 20 Mayıs 1978'de fırlatıldı. 4 Aralık 1978 tarihinde Venüs çevresinde eliptik bir yörüngeye oturtulan 517 kg. ağırlığındaki yörünge aracı, 300 W güç sağlayan güneş panelleri ile 17 değişik gözlem aygıtı çalıştırmakta idi. Gezegenin iyonosferi ve atmosferin üst katmanlarının yapısı hakkında ayrıntılı bilgi topladı, güneş rüzgarının iyonosfer ile etkileşimi ve oluşan manyetik alan üzerinde ölçümler yaptı, kütleçekimi değişimlerini kaydederek Venüs'ün iç yapısına ilişkin ipuçları elde etti. Gezegenin tamamına yakın bölümünün radar haritasını çıkardı. Yörünge ayarlamaları ile Ağustos 1992'ye dek çalışır durumda kaldı ve veri aktarmayı sürdürdü, ancak yakıtının tükenmesi sonucunda Venüs atmosferine girip parçalanarak görevini tamamladı.
  • Pioneer Venus 2 (Pioneer 13) (A.B.D.): 8 Ağustos 1978'de fırlatıldı. Bir taşıyıcı üzerinde bir büyük, üç küçük atmosfer sondasından oluşmakta idi. Büyük sonda taşıyıcıdan Venüs'e ulaşmadan 25 gün önce, küçük sondalar ise 20 gün önce ayrıldı. Sondalar birbirlerinden çok az farklı rotalar izleyerek 9 Aralık 1978'de gezegenin değişik bölgelerinde atmosfere girdiler. Küçük sondalardan biri gezegenin gece yüzüne, ikincisi gündüz yüzüne, üçüncüsü ise kuzey kutup bölgesine doğru düştüler ve atmosferin değişik düzeylerinde ısı, basınç, ivme, termal ışınım ve asılı parçacık ölçümleri yaptılar. Büyük sonda gündüz yüzünde ekvatora yakın bir bölgeye doğru paraşüt yardımı ile alçaldı ve küçük sondalardakine benzer ölçümlere ek olarak atmosfer bileşenlerini tanımlama ve oranlarını belirleme, bulut yapılarını değerlendirme amaçlı incelemeler yaptı. Atmosfere en son giren taşıyıcıda ise atmosferin dış tabakalarını araştırma amaçlı iki deney aygıtı daha bulunmaktaydı. Tüm bu ölçümlerin sonuçları, Pioneer Venus 1 yörünge aracının eşzamanlı olarak yaptığı gözlemler çerçevesinde değerlendirildi.
Venera 11 iniş aracı
Venera 11 iniş aracı
  • Venera 11 (S.S.C.B): 9 Eylül 1978'de fırlatıldı. Bir uçuş aracı ve bir iniş aracından oluşmakta idi. İki araç Venüs'e varmadan iki gün önce ayrıldılar, 25 Aralık 1978'de iniş aracı atmosfere girdi ve bir paraşüt yardımı ile gezegen üzerine yumuşak iniş yaptı. Aynı sırada gezegenin 34.000 km. yakınından geçmekte olan uçuş aracı, bu sondanın iniş sırasında ve yüzeyden gönderdiği verileri yeryüzüne aktardı. Uçuş aracının ayrıca iyonosfer, gezegenler arası ortam, güneş rüzgarı üzerinde gözlemler yapma amaçlı donanımı bulunmaktaydı. İniş aracının gözlem aygıtlarının bazılarının arızalanmasına karşın, alt atmosferde Karbon monoksit varlığını saptaması, yıldırımlar gözlemesi mümkün oldu. Uçuş aracı şu anda Güneş çevresindeki yörüngesindedir.
  • Venera 12 (S.S.C.B): 14 Eylül 1978'de fırlatıldı. İkizi Venera 11 gibi bir uçuş aracı ve bir iniş aracından oluşmakta idi. İki sonda Venüs'e varmadan iki gün önce ayrıldılar. İniş aracı, Venera 11'den dört gün önce, 21 Aralık 1978'de atmosfere girdi ve bir paraşüt yardımı ile gezegen üzerine yumuşak iniş yaptı. Aynı sırada gezegenin 34.000 km. yakınından geçmekte olan uçuş aracı, bu sondanın iniş sırasında ve yüzeyden gönderdiği verileri 110 dakika süreyle yeryüzüne aktardı. Uçuş aracının ayrıca iyonosfer, gezegenler arası ortam, güneş rüzgarı üzerinde gözlemler yapma amaçlı donanımı bulunmaktaydı. İniş aracı, arıza nedeniyle sınırlı bilimsel veri sağladıysa da Venera 11 tarafından gönderilen bilgileri destekledi. Uçuş aracı 1980'de Bradfield kuyruklu yıldızı ile ilgili ölçümler de yaptı. Şu anda Güneş çevresindeki yörüngesindedir.
  • Venera 13 (S.S.C.B): 30 Ekim 1981'de fırlatıldı. Bir uçuş aracı ve bir iniş aracından oluşmakta idi. Uçuş aracının iyonosfer, gezegenler arası ortam, güneş rüzgarı üzerinde gözlemler yapma amaçlı donanımı bulunmaktaydı. İki araç Venüs'e varmadan önce ayrıldılar, 1 Mart 1982'de iniş aracı atmosfere girdi ve bir paraşüt yardımı ile yavaşlayarak gezegen üzerine indi. Aynı sırada gezegenin yakınından geçmekte olan uçuş aracı, bu sondanın iniş sırasında ve yüzeyden gönderdiği verileri yeryüzüne aktardı. Bu veriler arasında Venüs yüzeyinin ilk renkli görüntüleri de bulunmaktaydı. Araç hareketli bir kol yardımıyla yüzeyden aldığı toprak örneğini değerlendirdi. Toprağın mekanik direncini ölçmek için bir kol, bir sismometre ve ayrıca atmosfer incelemelerini yapmak için çeşitli aygıtlardan yararlandı. Bir başka gezegenden yeryüzüne ses kayıtları gönderen ilk uzay aracı oldu. Gezegen yüzeyinin zorlu koşullarında 127 dakika işlevsel kalabildi. Uçuş aracı şu anda Güneş çevresindeki yörüngesindedir.
  • Venera 14 (S.S.C.B): 4 Kasım 1981'de fırlatıldı. Venera 13 ile aynı tasarıma sahipti. 5 Mart 1982'de Venüs yüzeyine inerek ikizinin gerçekleştirdiklerine benzer incelemeler yaptı. 57 dakika süreyle veri gönderdi. Uçuş aracı şu anda Güneş çevresindeki yörüngesindedir.
  • Venera 15 (S.S.C.B): 2 Haziran 1983'te fırlatıldı. 10 Ekim 1983'te Venüs çevresinde kutupsal bir yörüngeye girdi. İkizi Venera 16 ile birlikte Venüs yüzeyinin radar haritasını çıkarmaya başladı. İşlevsel kaldığı 8 ay süresinde bu iki araç gezegenin 30 derece Kuzey enleminin kuzeyinde kalan kesiminin ayrıntılı bir haritasını elde ettiler.
  • Venera 16 (S.S.C.B): 7 Haziran 1983'te fırlatıldı. Venera 15 ile aynı tasarıma sahipti. 11 Ekim 1983'te Venüs çevresinde kutupsal bir yörüngeye girdi. İkizi Venera 15 ile birlikte Venüs yüzeyinin radar haritasını çıkarmaya başladı. İşlevsel kaldığı 8 ay süresinde bu iki araç gezegenin 30 derece Kuzey enleminin kuzeyinde kalan kesiminin ayrıntılı bir haritasını elde ettiler. Venera programının son uçuşu oldu.
  • Vega 1(S.S.C.B): 15 Aralık 1984'te fırlatıldı. Venera programı çerçevesinde Venüs'e yönelik bir iniş uçuşu şeklinde planlanmış olan uçuş, sonradan Halley kuyruklu yıldızının 1986 geçişini izlemek amacıyla aracın taşıyıcı kısmından yararlanmak üzere değiştirildi. Yeni şekliyle bu uçuşa 'Venüs' ve 'Gallei' (Rusça, Halley kuyruklu yıldızının adı) sözcüklerinin birleştirilmesi ile 'Vega' adı verildi.9 Haziran 1985'te Vega 1 iniş aracı ve beraberindeki balon ayrıldıktan sonra, 2500 kg. ağırlığındaki taşıyıcı araç gezegenin çekim kuvvetinden yararlanarak yörüngesini 1986 yılında Halley ile buluşacak şekilde değiştirdi. Venüs iniş aracı 1500 kg. ağırlığında idi. Yüzeyden alınacak örnekler üzerinde analizler yapmak üzere tasarlanmış deney setleri güçlü rüzgarlar tarafından daha sonda yüzeye inmeden önce harekete geçirildiğinden, araç yüzeyde planlanan işlevini gerçekleştiremedi. Sondanın taşıdığı bir balon, ('aerobot' ) 54 km. yükseklikte boşluğa bırakıldı. 3,5 metre çapında ve toplam 25 kg. ağırlığındaki bu balon atmosferle ilgili ölçümler yapmak üzere donatılmıştı. Gezegenin karanlık yüzüne bırakılan balon, 47 saat uçtu, ve doğal atmosfer akımlarının yardımı ile 9000 km. yol aldıktan sonra gezegenin aydınlık yüzüne geçti ve güneş ışınlarının etkisi ile ısınıp patlayana kadar yeryüzündeki radyoteleskoplar tarafından kaydedilen önemli bilgiler gönderdi. Balonun dikey yöndeki beklenmedik yer değiştirmeleri, Venüs atmosferinin o güne dek bilinmeyen dikey akımlarını gün ışığına çıkardı. Vega 1 taşıyıcı aracı ise 6 Mart 1986'da Halley kuyruklu yıldızı ziyaretini gerçekleştirdi. Araç şu sırada Güneş çevresinde yörüngededir.
  • Vega 2 (S.S.C.B): 21 Aralık 1984'te fırlatıldı. Vega 1 ile aynı tasarıma sahipti. İniş aracının ayrılmasının ardından Venüs çekim yardımı ile Halley kuyruklu yıldızına doğru yöneldi. İniş aracı 15 Haziran 1985'te gezegen yüzeyine indi. Yüzeyden aldığı örneklerin incelemesinde Ay yüzeyinde bulunan, ancak dünyada nadir olan anortosit-troktolit tipi mineraller saptadı. Yerden 50 km. yükseklikte bırakılan balon ise iki güne yakın süre uçarak yeryüzüne bilgi gönderdi. 9 Mart 1986'da Halley kuyruklu yıldızının yanından geçen taşıyıcı araç ise şu anda Güneş çevresinde yörüngededir.
Bir Venüs Örümcek Ağının Magellan uzay sondası tarafından çekilen radar görüntüsü. Venüs'e özgü bu jeolojik yapının niteliği tam olarak bilinmemektedir.
Bir Venüs Örümcek Ağının Magellan uzay sondası tarafından çekilen radar görüntüsü. Venüs'e özgü bu jeolojik yapının niteliği tam olarak bilinmemektedir.
  • Magellan (A.B.D.): 4 Mayıs 1989'da fırlatıldı. 10 Ağustos 1990'da Venüs çevresinde kutupsal bir yörüngeye girdi. 4 yıllık görev süresi içinde Venüs yüzeyinin tamamına yakınının radar haritasını çıkardı. Aynı bölgeler üzerinden birden fazla geçiş yaptığı için değişik açılardan kaydettiği görüntüler birleştirilerek 3 boyutlu haritalar elde edilebildi. Gezegenin ayrıntılı bir kütleçekim alanı haritasını da çıkardı. Görev süresini tamamladığında atmosferin üst sınırına dek alçaltılarak, güneş panelleri üzerindeki sürtünme etkisi ölçümleri ile üst atmosfer yapısı hakkında bilgi edinmeye çalışıldı. Atmosferin frenlemesi nedeniyle giderek yükselti kaybeden araç iki gün sonra parçalanarak gezegen üzerine düştü. Venüs'ün jeolojisi ve yüzey şekilleri hakkında bilinenlerin önemli bir kısmı Magellan'ın sağladığı verilere dayanmaktadır.
  • Galileo (A.B.D.): Jüpiter ve uydularını incelemek amacıyla 18 Ekim 1989'da fırlatılan araç kütleçekimi yardımı ile hız kazanmak üzere 2 Ekim 1990'da Venüs yakın geçişi yaptı. Gezegenin resimlerini çekti.
  • Cassini-Huygens (A.B.D.): Satürn ve uydularını incelemek amacıyla 15 Ekim 1997'de fırlatılan araç kütleçekimi yardımı ile hız kazanmak üzere 26 Nisan 1998 ve 24 Haziran 1999'da iki kez Venüs yakın geçişi yaptı. 1978'de Venera 11'in Venüs atmosferinde yıldırım olarak yorumlanan gözlemlerini doğrulamak üzere atmosferde elektriksel etkinlik aradı, ancak olumlu bir bulguya rastlamadı .
  • MESSENGER (A.B.D.): Merkür gezegeninin araştırılması amacıyla 3 Ağustos 2004'te fırlatılan araç, kütleçekimi yardımı ile hızı düşürülerek Merkür yörünge girişine hazırlanmak üzere 2006 ve 2007 yıllarında iki kez Venüs yakın geçişi yapacaktır. Bu geçişler sırasında bilimsel aygıtların Merkür gözlemleri öncesi test ve ayarları yapılırken, Venüs üzerinde de gözlemler yapması mümkün olacaktır.
  • Venus Express (ESA-Avrupa Uzay Ajansı): 9 Kasım 2005'te fırlatıldığı 1270 kg. ağırlığındaki araç 11 Nisan 2006'da Venüs çevresinde yörüngeye girerek, gezegenin atmosferi üzerinde yoğunlaşan bilimsel gözlemler yapıyor. [1]
  • Planet-C (Japonya): JAXA (Japon Uzay Ajansı) tarafından 2008 yılında fırlatılması ve 2009'da Venüs yörüngesine girmesi planlanan 320 kg. ağırlığındaki araç, atmosfer hareketleri, elektriksel ve volkanik etkinlik araştırılması üzerinde yoğunlaşan gözlemler yapacaktır.
  • BepiColombo (ESA-Avrupa Uzay Ajansı): Merkür gezegeninin araştırılması amacıyla 2012 yılında fırlatılması planlanan araç henüz ön tasarı aşamasında olmakla birlikte, kütleçekimi yardımı amacıyla Venüs yakın geçişi yapması olasıdır.

Adlandırma

Bir kadın tanrıçanın adını taşıyan tek gezegen olması nedeniyle, Venüs ile ilgili adların, kadın adları arasından seçilmesine özen gösterilmektedir. Bu yaklaşıma tek istisna, gezegen üzerindeki en yüksek dağa İskoç bilim adamı James Clerk Maxwell'in adının verilmiş olmasıdır. Uluslararası Gökbilim Birliği'nin (IAU), Venüs üzerindeki yüzey şekillerinin adlandırılmasında uyulmasını önerdiği kurallar şöyledir:

  • Kıta büyüklüğündeki toprak parçaları (Terra): Aşk tanrıçaları
  • Büyük coğrafi bölgeler (Regio): Kadın devler ve Titan'lar
  • Kraterler: Ünlü kadınların adları. 20 km.den küçük kraterler için, yaygın kadın isimleri.
  • Dağlar (Montes): Tanrıça adları
  • Tepeler (Colles): Deniz tanrıçaları
  • Sırtlar (Dorsa): Gök tanrıçaları
  • Alçak düzlükler (Planita-ova): Mitolojik kadın kahramanlar
  • Yüksek düzlükler (Plana-plato): Bereket tanrıçaları
  • Uçurumlar (Rupes): Ev ve ocak tanrıçaları
  • Vadiler (Valles): 400 km.den uzun olanlar için, Venüs gezegenine değişik dillerde verilen adlar. 400 km.den kısa olanlar için, nehir tanrıçaları.
  • Taçlar (Corona): Dünya ve doğurganlık tanrıçaları
  • Yarıklar (Chasma): Av tanrıçaları, Ay tanrıçaları
  • Yassı volkanik tabanlar (Farra): Su tanrıçaları
  • Sığ çukurluklar (Fossa): Savaş tanrıçaları
  • İnce uzun yapılar (Linea): Savaş tanrıçaları
  • Düzensiz kraterler (Patera): Ünlü kadınlar
  • Çokgen görünümlü alanlar (Tessera): Kader ve kısmet tanrıçaları
  • Kum tepeleri (Unda): Çöl tanrıçaları
  • Yıldız biçimli oluşumlar (Astra), kubbe biçimli dağ ve tepeler (Tholus), kesişen vadi ağları (Labyrinthus), akıntı alanları (Fluctus): Çeşitli tanrıçalar

Gözlem koşulları

Venüs, Güneş çevresinde yaklaşık 224 gün süren dolanma süresine karşın yörüngesinin Yer yörüngesine yakınlığı nedeniyle 584 gün gibi uzun bir kavuşum dönemine sahiptir, gökyüzündeki görünür hareketini tamamlaması bir buçuk yılı geçer. Bir alt gezegen olması nedeniyle ile her zaman Güneş'e yakın konumdadır ve gözlenmesi için en uygun saatler sabah gün doğumundan önce ya da akşam gün batımından sonradır. 'Sabah yıldızı' ve 'akşam yıldızı' adları bu nedenle verilmiştir. -4,4 kadir derecesine varabilen parlaklığı ile en parlak yıldızlardan ve diğer tüm gezegenlerden çok daha ışıklıdır ve Güneş ve Ay'dan sonra gökyüzünün en parlak cismidir. Bu nedenle güneş ışınlarının Venüs'ün görülmesine izin vermediği alt ve üst kavuşum dönemleri dışında yılın büyük bir kısmında rahatlıkla izlenir. Merkür'e oranla çok daha yüksek uzanımlara (en uygun koşullarda 48o) çıkabildiği için gün içinde izlenebildiği süre de daha uzundur ve uygun dönemlerde akşam gün battıktan sonra veya sabah gün doğmadan önce 4 saat kadar ufkun üzerinde kalabilir. En parlak dönemlerinde güneş ufkun üzerinde iken bile görülmesi mümkündür, hatta alışkın gözler gün ortası saatlerinde dahi Venüs'ü yakalayabilir. Aysız gecelerde, kent ışıklarından yeterince uzaklaşılabilirse, insan gözünün Venüs ışığının çevreye verdiği aydınlığı hissedebildiği ve yarattığı gölgelerin farkedilebildiği de söylenir.

Venüs'ün dünyaya en yakın olduğu dönemlerde 1 yay dakikayı geçen görünür çapı insan gözünün ayırma gücü sınırındadır ve duyarlı gözlerin gezegenin hilal evresini ayırt edebilmesi olasıdır.

Tam güneş tutulmaları çok kısa süre için de olsa, Venüs'ün güneşe çok yakın konumda olduğu kavuşum dönemleri civarında bile gezegenin gün ortasında çıplak gözle izlenebilmesine olanak sağlar. 1999 tam güneş tutulması sırasında bu durum gerçekleşmiştir.

Evreler

Venüs'ün evreleri
Venüs'ün evreleri

Bir dürbün ile izlendiğinde Venüs'ün Ay gibi evreleri olduğu görülür. Gezegenin Güneş'in arkasında ve yeryüzüne en uzak durumda olduğu üst kavuşum anında, görünen yüzeyinin tümü aydınlandığından ışıklı bir daire şeklinde 'dolun' evresi söz konusudur. Bu aynı zamanda uzaklık nedeniyle Venüs'ün görünür çapının en az olduğu dönemdir. En yüksek uzanım anında gezegen bir yarımdaire şeklinde görülür. Güneş ile Yer arasında kaldığı dönemlerde ise karanlık yüzünü göstererek bir 'hilal' şekli alır. Hilalin en ince olduğu dönemler gezegenin dünyaya en yakın olduğu ve görünür çapının en büyük olduğu dönemlerdir, ancak bu esnada güneş ışınları gezegenin görülmesini engeller.

Parlaklık

Bir alt gezegen olması nedeniyle Venüs'ün yeryüzünden izlenebilir parlaklığı iki değişkenin ilişkisi ile belirlenir:

  • Evre
  • Görünür çap (dolaylı olarak Yer'e uzaklık)

Venüs Yer'e en yakın konumda iken dünyaya dönük yüzünün tümüyle karanlıkta kalması, aydınlanan yüzünün tamamının görülebildiği 'dolun' evresinde ise, en uzak dolayısıyla en küçük görünür boyutta olması nedeniyle yeterince parlak değildir. Gezegenin gözlemciye en fazla ışık gönderebildiği konumu, görünür aydınlık yüzeyin en fazla olduğu % 30 aydınlık (hilal ile yarım evre arası) evresidir.

Venüs atmosferinin neden olduğu gözlem özellikleri

Gündüz-gece çizgisi üzerinde kalan Venüs atmosferinin güneş ışınları ile aydınlanması, gezegenin evresinin beklenenden daha büyük olarak algılanmasına neden olur. Venüs'ün herhangi bir dönemde Güneş'le yaptığı açıya dayanarak hesaplanan evre ile gözlenen evresi arasındaki bu 'faz kayması' bazen 3 günü bulur ve Schröter etkisi olarak adlandırılır. Venüs'ün karanlık yüzünün yeryüzüne dönük olduğu alt kavuşum anında, arkadan aydınlanan atmosferin, ortası karanlık bir halka şeklinde görülebildiği saptanmıştır. Yine alt kavuşum anına yakın günlerde gezegenin karanlık yüzünde çok hafif bir aydınlanma hissedilebilir. 'Küllenmiş ışık' adı verilen bu olay, 1640'lardan bu yana bilinmektedir. Bugüne dek çok değişik açıklamalar getirilmiş olmasına rağmen nedeni bilinmeyen bu atmosfer aydınlanmasının, elektriksel etkinliklerle veya kutup ışıklarına benzer bir mekanizma ile ortaya çıkabileceği öne sürülmüştür.Venüs atmosferi gaz küreler gibi diferansiyel dönme (Kutup ve Eşlek-ekvator- bölgelerinin farklı hızlarda dönmesi) gösterir.

Venüs'ün Güneş geçişleri

Venüs'ün 2004 Güneş geçişi
Venüs'ün 2004 Güneş geçişi

Venüs yaklaşık 20 ayda bir alt kavuşum konumundan geçtiği halde, yörüngesinin tutulum düzlemine 3,39 derecelik bir açı yapması nedeniyle güneş diskinin önünden geçişi nadiren gerçekleşir. Venüs yörüngesinin tutulum düzlemini kestiği noktalar, yani yörüngenin çıkış ve iniş düğümleri ile Güneş ve Yer'in düz bir çizgi üzerinde yer almasını gerektiren bu durum yaklaşık her yüzyılda 2 kez, 8 yıl aralıklı çiftler şeklinde gözlenir. (1761-1769, 1874-1882, 2004-2012, 2117-2125 gibi). Tüm geçişler, düğümlerin Yer yörüngesindeki izdüşümlerine denk gelen Haziran ve Aralık ayları içinde olur. Daha yakından incelendiğinde geçişlerin düzenlerinin 243 yıllık bir döngü içerisinde yinelendiği dikkati çeker. İçinde bulunduğumuz binyılda, bu döngü 113,5-8-121,5-8 yıllık aralıklar şeklinde tekrarlanmaktadır.

Venüs'ün geçişi, Güneş diski üzerinde küçük bir siyah beneğin ilerlemesi şeklinde izlenir ve en fazla 7 saat kadar sürer.

Güneş Sistemi'nde Venüs'ün özel yeri

Bazı özellikleri, Venüs'ü eşsiz kılmaktadır:

venüs kendine ait fizistrospedi paraçalama özelliğine ve trospinakolitan perazmına sahiptir

  • Dünyaya yörüngesi itibariyle ortalama mesafe olarak en yakın gezegendir.
  • Yer'den gözlendiğinde en parlak gezegendir.
  • Yüzey sıcaklığı en yüksek gezegendir.
  • Yer benzeri gezegenler arasında en yoğun atmosfere sahip olanıdır.
  • En çok uzay aracı gönderilen ve üzerinde en çok sayıda insan yapımı araç bulunan gezegendir.
  • Ekseni etrafında ters döner.

*Örneğin Ay Dünya(Yer) etrafında dönerken kendi etrafında Venüs gibi ters, lâkin yavaş dönerek hep aynı yüzünü gösterir.

Mars (gezegen)

Mars

Yörüngesel özellikler
Ana eksen uzunluğunun yarısı 227 936 640 km
Eksantriklik 0,093 412 33
Yörünge süresi 686,98 gün
Gökyüzünde aynı
konuma gelme süresi
779,95 gün
Ortalama hız 24,130 9 km/s
Eğim 1,850 61°
Uydu sayısı 2
Fiziksel özellikler
Yarıçapı 3 396,2 km
Yüzey alanı 144 000 000 km2
Kütlesi 6,4191 × 1023 kg
Ortalama yoğunluğu 3,94 g/cm3
Ekvatordaki yerçekimi 3,71 m/s2 ya da 0,38gee
Kendi çevresinde
dönme süresi
24,622 9 saat
Eksen eğikliği 25,19°
Albedo 0,15
Kaçma hızı 5,02 km/s
Yüzey sıcaklığı
en düş. orta. en yük.
133K 210K 293K
Atmosferinin özellikleri
Atmosfer basıncı 0.7-0.9 kPa
Karbondioksit 95,32%
Azot 2,7%
Argon 1,6%
Oksijen 0,13%
Karbonmonoksit 0,07%
Su buharı 0,03%
Metan
Neon
Kripton
Xenon
Ozon
Eser miktarda


Mars (eski adıyla Merih), Güneş Sistemi'nin dördüncü gezegenidir. Türkçesi Sakıttır.

Konu başlıkları

Genel bilgiler

İsmi Eski Roma'daki savaş tanrısı Mars'tan gelmektedir (Bu Tanrı Eski Yunan Mitolojisinde Ares'e karşılık gelir). Literatürde kullanılan bir diğer ismi de Kızıl Gezegen'dir. Gece temiz bir havada basit bir teleskopla kırmızılığı görülebilir.

Mars'ın 1877 yılında Amerikan astronom Asaph Hall tarafından keşfedilen Phobos ve Deimos adında iki uydusu vardır. Bu uyduların nasıl oluştukları bilinmemekle beraber, Mars'ın kütle çekim alanına kapılmış asteroitler oldukları düşünülmektedir. Bu uyduların isimleri Eski Yunan Mitolojisinde Ares'in Afrodit'ten olma iki oğlu Phobos ve Deimos'tan gelmektedir.

Gel-git etkileri yüzünden, tıpkı Dünya ve Ay gibi her iki uydunun da yalnız bir yüzü Mars'a dönüktür. Phobos Mars'ın çevresinde Mars'ın kendi ekseni etrafında döndüğünden daha hızlı döndüğü için yörüngesi giderek küçülmektedir. Bu nedenle ileriki bir tarihte Phobos Mars'a çarpacaktır. Buna karşın, Deimos Mars'tan yeterince uzakta olduğu için, yörüngesi giderek büyümektedir.
İnce bir atmosferi olan karasal gezegen Mars'ın yüzey şekilleri Ay'daki kraterlerle ve Dünya 'daki volkanlar vadiler ve çöller ve kutuplarla benzerlik göstermektedir. Olimpus Dağı, mars yüzeyindeki bilinen en yüksek dağdır. En büyük kanyonu iseValles Marineris'dir. Mars'ın coğrafik yapısı dışında, dönüş periodları ve mevsim döngüleri de Dünya'ya benzemektedir.

Victoria Kraterinin kuş bakışı görünümü. Saat 10 yönünde kraterin tam kenarında göze çarpan küçük siyah nokta Mars Kâşifi Opportunity.
Victoria Kraterinin kuş bakışı görünümü. Saat 10 yönünde kraterin tam kenarında göze çarpan küçük siyah nokta Mars Kâşifi Opportunity.

1965'te Mariner 4'ün Mars yakınındaki gözlemlerinden önce, gezegenin yüzeyinde sıvı halde su bulunabileceği düşünülüyordu. Bu düşüncenin temel dayanağı yapılan gözlemlerde özellikle kutup bölgelerinde denizler ve kıtalar gibi görünen aydınlık ve karanlık bölgeler ve düz çizgiler bulunması ve bunların bazı gözlemciler tarafından su kanalları veya vadi benzeri oluşumların varlığı ve gezegende sıvı halde suyun varlığı olarak yorumlanmasıdır. Daha sonra bu düz çizgilerin gerçek olmadığı ispatlandı ve bunların bir ışık yanılsamasından ibaret olduğu açıklaması getirildi. Ancak halen daha Mars, güneş sistemimizde dünyadan sonra suyun ve belki de yaşamın var olabileceği yegane gezegen olarak görülmektedir.

Mars gezegeni hala bir takım uzay araçlarına ev sahipliği yapmaktadır, bunlar: Phoenix (uzay gemisi), Mars Odyssey, Mars Express ve Mars Reconnaissance Orbiter'dir. Dünya dışındaki tüm gezegenler içinde bu en yüksek rakamdır.

İsim Çap
(km)
Kütle
(kg)
Ortalama yörünge
yarıçapı (km)
Yörünge süresi
(saat)
Phobos 22.2 (27 × 21.6 × 18.8) 1.08×1016 9 378 7.66
Deimos 12.6 (10 × 12 × 16) 2×1015 23 400 30.35
Olympus Dağı
Olympus Dağı
Mars gezegeninin, 23 Ağustos 2003'te, Hubble Uzay Teleskobu tarafından çekilmiş resmi
Mars gezegeninin, 23 Ağustos 2003'te, Hubble Uzay Teleskobu tarafından çekilmiş resmi

Mars'ta aktif durumda bulunan robotlar

Yerde

Yörüngede

İç bağlantılar

Dış bağlantılar


Jüpiter (gezegen)

Jüpiter

Jüpiter Voyager 2 den çekilmiş
Yörünge Özellikleri
Yarı büyük eksen 778.412.000 km.
5,203 A.Ü.
Günberi 740.742.000 km.
4,952 A.Ü.
Günöte 816.081.000 km.
5,455 A.Ü.
Yörünge dışmerkezliği 0,048
Yörünge eğikliği 1,3o
Dolanma süresi 4.335,3 gün
11,87 yıl
Kavuşum süresi 398,86 gün
Yörünge hızı
ortalama
13,05 km/saat
Gözlem Özellikleri
Yer'e en yakın konumda
Yer'e Uzaklık 588.500.000 km.
3,93 A.Ü.
Görünür çap 49 ark saniye
Görünür parlaklık -2,7
Yer'e en uzak konumda
Yer'e Uzaklık 968.100.000 km.
6,47 A.Ü.
Görünür çap 29,8 ark saniye
Görünür parlaklık -1,3
Fiziksel Özellikler
Ekvator çapı
(1 bar düzeyinde)
142.984 km.
(11,2 x Yer)
Kutupsal çap
(1 bar düzeyinde)
133.709 km.
Basıklık 0,065
Hacim 1235 x Yer
Kütle 318 x Yer
Yoğunluk 1,33 g/cm3
Eksen eğikliği 3,13o
Dönme süresi 9 sa. 55 dk. 30 s.
Ekvatorda yerçekimi
(1 bar düzeyinde)
23,12 m/s2
(2,36 x Yer)
Ekvatorda kurtulma hızı
(1 bar düzeyinde)
59,5 km/saniye
(5,32 x Yer)
Beyazlık
(albedo)
0,52
Etkin sıcaklık 126 K

Jüpiter (Müşteri, Erendiz) Güneş sisteminin en büyük gezegeni. Güneşten uzaklığa göre beşinci sırada. Adını Roma tanrılarının en büyüğü Jüpiter'den alır. Büyük ölçüde hidrojen ve helyumdan oluşmakta ve gaz devleri sınıfına girmektedir.

Konu başlıkları

Fiziksel özellikler

Jüpiter gerek çap, gerekse kütle açısından güneş sistemindeki en büyük gezegendir. Nispeten düşük olan yoğunluğu (suyun yoğunluğunun 1,33 katı), gezegenin akışkan yapısı ve kendi çevresindeki dönüş hızının yüksekliği nedeniyle, Satürn kadar olmasa da ekvatorda geniş, kutuplarda basık elipsoid görünüme sahiptir. Beyazlık derecesi (albedo) 0.52 olan gezegen, böylece yüzeyine düşen güneş ışığının yarıdan fazlasını görünür tayfta yansıtmaktadır. Ancak kızılötesi alandaki ışınım ölçüldüğünde, Jüpiter'in Güneş'ten aldığı enerjinin 2,3 katı kadarını dışarı yaydığı görülür. Bu nedenle gezegen, Güneş'e olan uzaklığına göre hesaplanan 106 K' den (-167°C) çok daha yüksek bir etkin sıcaklığa sahiptir ve 126 K (-147°C) sıcaklığında bir kara cisim gibi ışır. Jüpiter'in kendi içinde yarattığı bu enerji fazlası, gezegenin yerçekiminin etkisi ile yavaşca kendisi üzerine çökerek küçülmesi sırasında dönüştürülen potansiyel enerji ile açıklanmaktadır. Bu olgu Kelvin-Helmholtz mekanizması olarak adlandırılır.

İç yapı

Gaz devleri, içerdikleri elementlerin oranlarına göre iki alt gruba ayrılırlar. Uranüs ve Neptün 'buz' ve 'kaya' oranı daha yüksek Uranian gezegenler grubundadır. Jüpiter ve Satürn ise, adını yine Jüpiter'den alan Jovian gezegenler grubu içindedir. Jovian gezegenlerin kabaca Güneş'i ve benzer yıldızları oluşturan maddeleri bu yıldızlardakine yakın oranlarda içerdiği düşünülür. 20. yüzyıl başlarından itibaren, gezegenlerin çap, kütle, yoğunluk, kendi etrafında dönme hızları, uydularının davranışları gibi verilerden yola çıkılarak iç yapıları hakkında ortaya atılan görüşler, daha sonra tayfölçümsel çalışmalarla ve son otuz yıl içinde gerçekleştirilen birçok uzay aracı araştırması ile zenginleştirilmiş ve günümüzde oldukça tatminkar modeller geliştirilmiştir.

Bu bilgiler çerçevesinde, Güneş sisteminin ilksel bileşimine paralel biçimde Jüpiter'in kütlesinin büyük kısmını hidrojen ve helyumun oluşturduğu varsayılır. Hidrojen/Helyum kütle oranı 75/25 civarındadır. Daha ağır elementlerin Güneş Bulutsusu içindeki toplam payı % 1 iken, hafif bir zenginleşme ile Jüpiter'de %3-4,5 arasında olabileceği hesaplanmaktadır. Bu sonuca, gezegenin gözlenen basıklığının 10-15 Yer kütlesinde yoğun bir çekirdeğin varlığı ile açıklanabilmesi üzerine varılmıştır. Jüpiter'i oluşturan yapı taşları özgül ağırlıklarına göre tabakalanmış durumdadır:

  • Gezegenin merkezinde demir ve ağır metallerle birlikte bunların çevresinde daha hafif elementleri içeren bir 'buz' ve 'kaya' tabakasının oluşturduğu çekirdek bulunur. Bu noktada ısı 20.000K, basınç 100 megabara (100 milyon atmosfer) yakındır. Yüksek basınçlar nedeniyle yoğunluğu 20g./cm3 olan bu katmanın yarıçapı 10.000 km.den küçük, ancak kütlesi Yer'in 10 katını aşkındır.
  • Çekirdeği çevreleyen alanda metalik hidrojenden oluşmuş 40.000 km. kalınlığında manto tabakası yer alır. Hidrojen 3 ila 4 Mbar'dan daha yüksek basınçlarda devreye giren van der Waals kuvvetlerinin etkisi ile moleküler yapısını kaybederek metalik özellikler kazanır, ısıl ve elektriksel iletkenliği çok artar. Manto tabakası merkezden itibaren gezegen yarıçapının 3/4'üne dek uzanır, Jüpiter'in hacminin yarıya yakınını, kütlesinin ise çok büyük bir çoğunluğunu oluşturur. Bu alandaki metalik hidrojenin sıvı nitelikte olduğu, yoğunluğunun dıştan içe doğru 1'den 5'e kadar (su=1) yükseldiği sanılmaktadır.
  • En dışta 20.000 km. kalınlığında moleküler hidrojen(H2) tabakası bulunur. Gezegenin yüzeyine yaklaşıldıkça basınç, ısı ve yoğunluk düşer, hidrojen sıvıdan gaza dönüşür ve giderek atmosfer tabakasına geçilir.

Katmanlar arasında keskin sınırlar olmadığı, bir fazdan diğerine kademeli geçişler olduğu, aynı zamanda konveksiyon akımlarının katmanlar arası madde alışverişine kısmen de olsa izin verdiği tahmin edilir. Gezegenin iç kesimlerinde üretilen dev boyutlardaki ısının bu tür akımlar yardımıyla yüzeye dek aktarılabilmesi tümüyle akışkan nitelikte bir iç yapı varlığını gerektirmektedir.

Jüpiter'in bir gaz devinin ulaşabileceği en büyük çapa yakın boyutlarda olduğu hesaplanmıştır. Kütlesi daha büyük olan bir gezegen, artan kütleçekim gücünün etkisi ile kendi üzerine çökerek, Jüpiter'e oranla daha büyük yoğunluğa, daha küçük bir hacme sahip olacaktı. Daha yüksek çekirdek sıcaklığı anlamına gelen bu durum, kütlesi Güneş'in kütlesinin % 8'i kadar olan bir gezegenin nükleer füzyon için gerekli iç sıcaklığa ulaşarak bir yıldız haline gelmesi ile sonuçlanır. Bu nedenle, 0,001 Güneş kütlesindeki Jüpiter, 'yıldız olmayı başaramamış' bir gökcismi olarak da tanımlanabilir.

Atmosfe

Jüpiter'in kalın ve karmaşık bir atmosfer tabakası bulunmaktadır. Bu atmosferin Güneş Sistemi'nin kökenini oluşturan Güneş Bulutsusu'nun varsayılan yapısına yakın olarak, %88-92 oranında moleküler hidrojen (H2) ve %8-11 oranında helyum (He) içerdiği tahmin edilmektedir. Bunları %0.1 oranla su buharı (H2O) ve metan (CH4) ve %0.02 oranla amonyak (NH3) izler. Karbon, Etan, Hidrojen Sülfit, neon, oksijen, kükürt, fosfor ve diğer elementleri içeren çeşitli bileşiklere milyonda bir düzeyini geçmeyen oranlarda rastlanmaktadır.

Aslında gaz devlerinin belirli bir yüzeyi olduğu söylenemez, gezegenden atmosfer olarak adlandırılabilecek en dış gaz tabakasına doğru kesintisiz, yumuşak bir geçiş sözkonusudur. Bu tür gezegenlerin çapları hesaplanırken 1 bar (yaklaşık 1 atmosfer) sınırının dışında kalan kısım dikkate alınmaz, basıncın 1 barı aştığı noktadan itibaren tüm hacim gezegenin sınırları içinde kabul edilir. Ancak çoğu zaman, atmosfer olarak adlandırılan alan, hidrojen gazı yoğunluğunun sıvı hidrojen yoğunluğu düzeyine çıktığı 10.000 bar basınç sınırına yani gezegenin binlerce kilometre içine dek genişletilir.

Uzaktan bakıldığında, Jüpiter yüzeyinin özellikle ekvatora yakın enlemlerde belirginleşen ardışık koyu ve açık renkli bulut kuşaklarından oluştuğu görülür. atmosferin en üst katmanlarındaki bulutlar kristal halindeki amonyak ve su parçacıklarından oluşur. Atmosferin derinliklerine doğru, yoğuşma sıcaklıklarına göre değişik bileşiklerin meydana getirdiği bulutlar tabakalar halinde birbirini izler. Atmosferde dikey ve yatay doğrultuda yoğun bir hareketlilik gözlenir, 600 km./saat hıza ulaşan rüzgarlar nadir değildir.

15.000 x 25.000 km. boyutları ile yerküreyle karşılaştırılabilecek büyüklükteki Büyük Kırmızı Leke'nin çok uzun ömürlü dev bir 'fırtına' alanı olduğu düşünülmektedir.

Jüpiter'in atmosferi makalesinde konu hakkında daha ayrıntılı bilgi yer almaktadır.

Jüpiter'in kendi ekseni etrafında dönüşü

Katı bir yüzeye sahip olmayan Jüpiter'in dönüş özelliklerinin, atmosfer yapılarının gözlenen hareketlerine göre belirlenmesine çalışılmıştır. Ancak daha 1690 yılında Giovanni Domenico Cassini ekvator bölgesi ile kutupların farklı devirlerle döndüğünü farketmiştir. Sonradan bu gözlem duyarlı ölçümlerle doğrulanmış ve gezegen için 'Sistem I' ve 'Sistem II' olmak üzere iki ayrı dönme süresi tanımlanmıştır. Ekvator bölgelerinin dönüşü 9 saat 50 dakika 30,003 saniyede tamamlanır ve Sistem I olarak adlandırılır. Kutup bölgelerinde dönüş süresi 9 saat 55 dakika 40,630 saniyedir ve Sistem II adını alır. Jüpiter'den yayılan mikrodalga ve radyo dalgaboyundaki ışınımların ise 9 saat 55 dakika 29,730 saniyelik bir dalgalanma göstermelerine dayanarak, gezegenin manyetik alanını belirleyen büyük metalik hidrojen kütlesinin bu hızla dönmekte olduğu sonucu çıkarılmıştır. 'Sistem III' adı verilen bu periyod Jüpiter'in gerçek dönüş hızı olarak kabul edilir, ve bu değerin kutuplardaki dönüş hızı ile hemen hemen aynı olduğu; ekvatorda ölçülen farklı hızın, bu bölgelerdeki bulutların 400 km./saat hıza ulaşan rüzgarlar nedeniyle doğuya doğru hareket etmelerinden kaynaklandığı dikkati çeker.

Halkalar [değiştir]

Yakın bir tarihe kadar Güneş sisteminde halkaları olduğu bilinen tek gezegen Satürn idi. Dış gezegenleri ziyaret eden ilk uzay aracı olan Pioneer 10'un 1973'deki gözlemleri üzerine varlığından kuşkulanılan Jüpiter halkaları 1979 yılında Voyager 1 ve 2 uzay araçları tarafından çekilen fotoğraflarda gösterildi.

Jüpiter'in Halka Sistemi

Halkalar Yörünge Jüpiter'in Merkezinden Uzaklık
RJ (km.)
Halo Halka
1,4 1,71 100.000 122.000
Ana Halka Ana Halka (iç) 1,71 122.000
XVI Metis 1,79 128.100
XV Adrastea 1,80 128.900
Ana Halka (dış) 1,81 129.000
Gossamer Halka Gossamer Halka (iç) 1,81 129.200
V Amalthea 2,54 181.400
XIV Thebe 3,11 221.900
Gossamer Halka (dış) 3,15 224.900

Satürn‘ün halkaları gibi Jüpiter halkaları da, toz denebilecek mikroskopik boyutlardan, onlarca metre büyüklüğe kadar değişen çeşitli boylarda çok sayıda parçacığın bir araya gelmesinden oluşurlar. Bu parçacıklar bir bulut oluştururcasına birbirinden bağımsız hareket eder ve herbiri gezegen etrafında kendine ait bir yörünge izler. Bu yörüngelerin gezegen ve iç uydularının çekim güçlerinin karşılıklı etkisi ile sürekli şekillenmesi sonucunda halkaların yapısı korunur. Satürn halkaları ile karşılaştırıldığında, Jüpiter'in halkalarının birçok yönden farklı olduğu görülür. Jüpiter halkalarının çok daha silik olmalarının ve zor gözlenmelerinin nedeni, kendilerini oluşturan toplam madde kütlesinin çok daha az olmasının yanısıra ışık yansıtıcılıklarının da sınırlı olmasıdır. Jüpiter halkaları, 0,05 gibi bir beyazlık (albedo) derecesi ile üzerine düşen güneş ışığının büyük bir kısmını soğurur ve karanlık görünürler. Satürn yolculuğu sırasında Cassini-Huygens uzay sondası 2003 yılında Jüpiter'in yakınından geçerken yaptığı ölçümlerle Jüpiter halkalarının küresel değil, keskin kenarlı ve köşeli parçacıklardan oluştuğunu düşündüren veriler elde etti. Bu bilgiler halkaların Jüpiter'e yakın yörüngelerdeki uydulardan kopan parçacıklardan oluştuğu savını destekler niteliktedir. Bu uydulardan Metis ve Adrastea 'Ana halka'nın, Amalthea ve Thebe ise daha dışta yeralan 'Gossamer (ipliksi-ağsı) Halka'nın kaynağı olarak düşünülmektedir. Metis ve Adrastea, Jüpiter'in merkezinden 1,79 ve 1,81 RJ (Jüpiter yarıçapı) uzaklıktaki yörüngeleri ile gezegenin Roche Limiti'nin içinde bulunurlar ve parçalanma sürecinde uydular olarak değerlendirilebilirler. Ana halka bu iki uydunun yörüngesi hizasında keskin bir dış sınırla kesintiye uğrarken, iç sınırı daha belirsizdir ve 'Halo (ayla) halka' adı verilen üçüncü bir bölümle silik bir şekilde atmosferin üst sınırlarına kadar devam eder. En dışta sınırları belirsiz dördüncü bir halka yapısı, çok seyrek bir toz bulutu şeklinde ters bir yörüngede döner. Bu halkanın kaynağı sonradan Jüpiter'in çekim alanına yakalanmış gezegenlerarası toz olabilir.

Manyetosfer

Jüpiter Güneş sistemi içinde en güçlü manyetik alana sahip gezegendir. Yer ile karşılaştırıldığında 19.000 kat daha güçlü olduğu görülen bu alan, ekseni Jüpiter'in dönme eksenine 11o açı yapan ve gezegenin merkezine 8.000 km. uzaktan geçen, kutupları ters yerleşmiş olan bir çift kutupludur. Böylece Jüpiter'in kuzey manyetik kutbu gezegenin güney coğrafi kutbuna, güney manyetik kutbu ise kuzey coğrafi kutbuna yakındır. Bu çift kutuplunun yanı sıra, Jüpiter'in manyetik alanının, yapısını karmaşıklaştıran bir dört kutuplu ve bir sekiz kutuplu bileşeni bulunmaktadır. Jüpiter'in kütlesinin ancak küçük bir kısmını oluşturan demir ve diğer ağır elementleri içeren çekirdeğinin bu denli güçlü bir manyetik alan yaratması mümkün olmadığından, gezegenin manyetizmasından metalik sıvı hidrojen tabakası sorumlu tutulur. Elektrik iletkenliği çok yüksek olan bu bölgedeki elektronların akımı, Jüpiter'in kendi çevresindeki hızlı dönüşünün etkisi ile güçlü bir manyetik alan oluşturur. Bu alanın etkisi ile, Jüpiter dev bir manyetosfere sahiptir.

Jüpiter manyetosferi, Güneş rüzgarı adı verilen ve güneş kökenli hızlı parçacıkların oluşturduğu plazma akımının, gezegenin manyetik alanın etkisi ile saptırılarak engellendiği bölgedir. Manyetosferin en dışında, plazma akımının hızla yavaşlayarak hızının ses hızının altına indiği ve yön değiştirdiği bir şok dalgası gözlenir. Güneş etkinliğine göre gezegene uzaklığı değişen bu sınır, uzay sondaları tarafından Jüpiter'den Güneş doğrultusunda 25-30 milyon km. uzaklıkta saptanmıştır. Gezegene yaklaştıkça manyetik alanın etkisi giderek artar ve güneş kökenli parçacıkların aşamayarak çevresinden dolaşmak zorunda kaldığı manyetopoz, manyetosferin sınırını belirler. Bu alan da güneş rüzgarının şiddetindeki değişimlere paralel olarak kısa sürelerde genleşip daralmakla birlikte Jüpiter'in 3-7 milyon km. uzağında başlar. Güneş rüzgarının deforme ettiği manyetik kuvvet çizgilerine uyumlu olarak, bu sınır yanlara doğru genişleyerek gezegenden uzaklaşır ve bir damla biçimini alarak gezegenin arkasında bir milyar km. ye kadar uzanan bir kuyruk oluşturur.

Manyetosferin gezegene daha yakın kesimlerinde manyetik alana yakalanan elektrik yüklü parçacıkların doldurduğu iki dev Van Allen kuşağı bulunur.Bu bölgelerden kaynaklanan çok güçlü radyo dalgaları, 9 saat 55 dakika 30 saniyelik bir döngü içinde dalgalanmalar gösterir. Bunun Jüpiter'in manyetik alanının oluşumuna neden olan metalik hidrojen tabakasının dönme hızını yansıttığı varsayılarak, gezegenin kendi etrafındaki dönüş hızını atmosfer hareketlerinden bağımsız olarak saptamak mümkün olmuştur.

Van Allen kuşaklarında toplanan yüklü parçacıkların çoğunluğu Jüpiter atmosferinden koparak manyetik alana kapılan gazlardan kaynaklanır, ve büyük ölçüde iyonize hidrojen atomlarından salınan serbest elektron ve protonların yanı sıra, helyum, oksijen ve kükürt iyonlarına da rastlanır. Çok yüksek hızlara ulaşan bu iyonların oluşturduğu plazmanın ısısı 300-400 milyon K olarak ölçülmüştür. Bu, Güneş'in merkezi de dahil olmak üzere Güneş sisteminin (Güneş taçküresi dışında) bilinen herhangi bir noktasından çok daha yüksek bir sıcaklıktır. Aynı zamanda Jüpiter manyetosferi, hacim açısından Güneş sisteminin en büyük oluşumu olarak kabul edilmelidir.

Yüklü parçacıklar Jüpiter'in manyetik kutuplarındaki açık manyetik çizgiler boyunca ilerleyerek atmosferin yüksek tabakalarında kutup ışıklarının ortaya çıkmasına neden olurlar.

Jüpiter'in birçok uydusu manyetosferin içinde kalan yörüngelere sahiptir. Büyük uydulardan gezegene en yakın olan İo, Jüpiter ile uydu arasında kesintisiz süren bir elektrik akımının etkisi altındadır. Uydu yüzeyinden iyonize atomları kopararak İo ve Jüpiter'i iki yönden birbirine bağlayan ve İo Plazma Torus'u adı verilen bir sıcak plazma halkası oluşturan bu akımın, 1000 gigawatt değerini bulduğu sanılır. Jüpiter'i çevreleyen 1 milyon km. yarıçapındaki alan, çok yoğun ışınımların varlığı nedeniyle uzay sondalarının bu alandan geçtikleri sıradaki etkinliklerini önemli ölçüde kısıtlamıştır, ve ileride yapılabilecek insanlı araştırmalar için önemli sakıncalar yaratabilecek durumdADIR.

Uydular [değiştir]

Jüpiter'in 63 doğal uydusu bilinmektedir. Galileo Galilei 1610 yılında kendi yaptığı basit teleskopla Jüpiter'in en büyük 4 uydusu İo, Europa, Ganymede, ve Callisto'yu keşfederek ilk kez Yerküreden başka bir gezegene ait uyduların varlığını göstermiştir. Bu uydular sonradan Galilei uyduları olarak adlandırılmıştır. 1970'lere kadar bilinen uydu sayısı 13 iken, Jüpiter'i ziyaret eden Voyager uzay araçları 3 yeni uydunun bulunmasına yardımcı olmuş, 2000 yılından bu yana yeryüzünden yapılan sistematik araştırmalarla, bu sayı kısa sürede artmıştır. Jüpiter'in doğal uyduları makalesinde uydular hakkında ayrıntılı bilgi yer almaktadır.

Jüpiter araştırmalarının tarihçesi

  • Eski çağlardan günümüze ulaşan kaynaklarda Jüpiter, Ay, Güneş, Merkür, Venüs, Mars, ve Satürn ile birlikte görünür hareketlerinin diğer yıldızlardan farklılığıyla tanınan 7 gökcisminden biri olarak gösterilir. Bu yönüyle, antik gökbilim için olduğu kadar astroloji açısından da önem taşıyan gezegen, birçok dilde haftanın yedi gününe adını veren varlıklardan biri olarak, tarihöncesinden günümüze insan kültüründe yerini korumuştur.
  • Jüpiter'in yalnızca parlak bir yıldız değil, üzerinde değişik koyulukta kuşakların seçilebildiği dairesel görünümde bir cisim olduğunu ilk farkeden 1610 yılında Galileo Galilei oldu. Galilei aynı zamanda Jüpiter'in en büyük dört uydusunu keşfetti ve Dünya dışındaki bir gezegenin kendi etrafında dönen uyduları olabileceğinin bu ilk kanıtını, Kopernik'in o güne dek yaygın kabul görmeyen güneşmerkezli teorisini desteklemek için kullandı.
  • 1664'te İngiliz bilim adamı Robert Hooke, ( ya da bazı kaynaklara göre Fransız-İtalyan bilim adamı Giovanni Domenico Cassini) Büyük Kırmızı Leke'yi ilk kez gözledi.
  • 1676'da Danimarkalı gökbilimci Ole Christensen Romer, Jüpiter'in uydularının örtülme ve tutulma zamanlarındaki oynamaların gezegenin Yer'den uzaklığıyla ilişkisini ölçerek ilk kez ışık hızını %25 yanılma payı ile hesapladı. Ölçüm araçlarının gelişmesinin katkısıyla, Romer'in bulduğu bu yöntem, 19. yüzyıl başında ışık hızının %1'den daha az hata ile hesaplanmasına olanak tanıdı.
  • 1690'da Cassini, Jüpiter'in kendi etrafında dönüş süresinin kutuplarda ve ekvatorda farklı olduğunu ilk kez gözlemledi.
  • 1932'de Alman gökbilimci Rupert Wildt tayfölçümsel gözlemlere dayanarak Jüpiter atmosferinde metan ve amonyak bulunduğunu saptadı, bunun ancak çok büyük miktarlarda hidrojen varlığı ile açıklanabileceğini bildirdi. Wildt, 1934'te gezegenin kütle ve yoğunluk verilerinden yola çıkarak Jüpiter'in iç yapısının ve atmosferinin bileşimini bugün kabul edilene benzer şekilde hesapladı.
  • Hidrojen varlığının kanıtlanması ancak 1960'larda kızılötesi tayfölçüm tekniklerinin gelişmesi ile gerçekleşti. Tayfölçümsel yöntemlerle varlığı ortaya çıkarılması çok güç olan helyum ise ancak 1970'lerde uzay sondalarının hidrojen-helyum atomları arasındaki etkileşimleri ölçmeleri ile gösterilebildi.
  • 1955 yılında Burke ve Franklin, Jüpiter'den yayılan yüksek miktardaki radyo ışınımını rastlantısal olarak saptadılar. Bu buluş, Jüpiter'in çok güçlü magnetosferinin keşfedilmesine yol açtı.

Pioneer 10 ve 11 uzay araçları

Kasım-Aralık 1973'te Pioneer 10, Kasım-Aralık 1974'te Pioneer 11 adlı uzay sondaları Jüpiter'in yakınından geçerek gezegenin ilk yakından gözlemini gerçekleştirdiler. Sırasıyla 1972 ve 1973 yıllarında fırlatılan birbirinin aynı bu iki araç, sınırlı teknik donanıma sahip olmalarına karşın daha sonra gerçekleştirilen uçuşların planlanması için yaşamsal önem taşıyan bilgiler topladılar.

  • Jüpiter'in boyutları ve çekim gücü duyarlı biçimde ölçülerek yoğunluğunun ve kütlesinin daha büyük kesinlikle hesaplanmasına olanak sağlandı.
  • Gezegenin çekim alanının çok düzenli olduğu görüldü, buna dayanarak Jüpiter'in büyük ölçüde akışkan bir yapıya sahip olduğu görüşü güç kazandı.
  • Uyduların boyutları ve fiziksel özellikleri hakkında edinilen yeni bilgilerle Jüpiter sisteminin oluşumu ve evrimi üzerine yeni bakış açıları oluşturuldu.
  • Manyetosfer ile ilgili çok sayıda ölçüm yapıldı.
  • Jüpiter'in gezegenlerarası alana yüksek enerjili elektron ve düşük enerjili protonlar yaydığı saptandı ve böylece bilinen kozmik ışınım kaynaklarına yeni bir tanesi eklenmiş oldu.
  • Gezegenin birçok fotoğrafı çekildi, kızılötesi ve morötesi alanda incelemelerle atmosferin bileşimi ve meteorolojik özellikleri hakkında yeni bilgiler edinildi. Yeryüzünden gözlenemeyen kutup bölgelerinin görüntüleri elde edildi.
  • Büyük Kırmızı Leke'ye benzer, daha küçük boyutta lekeler saptandı, bu oluşumların meteorolojik olaylar olabileceği düşüncesi sağlamlaştı.
  • Beta Scorpio yıldızının radyo ışınımının Jüpiter'in atmosferi tarafından örtülmesi incelenerek atmosferin değişik yükseltilerindeki sıcaklıklar ölçüldü.

Voyager 1 ve 2 uzay araçları

Voyager 1 tarafından çekilmiş Jüpiter'in farklı fotoğraflarından oluşan bir animasyon. Voyager 1 Jüpiter'e yaklaşırken, her Jüpiter günü (yaklaşık 10 saat) her bir kare çekilmiştir.
Voyager 1 tarafından çekilmiş Jüpiter'in farklı fotoğraflarından oluşan bir animasyon. Voyager 1 Jüpiter'e yaklaşırken, her Jüpiter günü (yaklaşık 10 saat) her bir kare çekilmiştir.

1977 yılında fırlatılan ve birbirinin aynı olan Voyager 1 ve Voyager 2 uzay araçları sırasıyla Ocak-Mart 1979 ve Haziran-Temmuz 1979 tarihlerinde Jüpiter'in yakınından geçerek gözlemlerde bulundular.

  • Voyager 1, Jüpiter'in de Satürn‘ün halkalarına benzer bir halka sistemi bulunduğunu saptadı.
  • Jüpiter'in 3 yeni uydusu, Adrastea, Metis, ve Thebe keşfedildi.
  • Gezegenin ve uydularının çok sayıda yüksek çözünürlüklü görüntüsü elde edildi. Uyduların ayrıntılı yüzey fotoğrafları yardımıyla, iç yapıları hakkında değerli ipuçları sağlayan jeolojik özellikleri öğrenildi.
  • İo üzerinde volkanik aktivite gözlendi. Jüpiter manyetosferinin dış kesimlerine kadar uzanan alanda İo'dan kaynaklandığı sanılan kükürt, oksijen, ve sodyum izlerine rastlandı. Aynı elementlere ait iyonların İo yörüngesi içinde ışık hızının %10'una varan hızlara ulaşarak bir sıcak plazma alanı oluşturduğu saptandı. Pioneer uzay araçlarının gözlemleri ile çelişen bu bulgular iç manyetosferin değişken bir yapısı olduğu izlenimini oluşturdu.
  • İo'dan Jüpiter'e ulaşan akı hattının 5 milyon amper düzeyinde bir elektrik akımı taşıdığı saptandı.
  • Voyager 2'nin Satürn'e doğru yolculuğu sırasında Jüpiter manyetosferinin Satürn yörüngesine dek uzanan kuyruğu kanıtlandı.
  • Jüpiter atmosferinde yıldırımlara neden olan yoğun elektrik boşalmaları saptandı.
  • Bulut hareketleri izlendi, atmosfer akımlarının önceden bilinmeyen ayrıntıları saptandı, Büyük Kırmızı Leke'nin altı günlük bir devirle saat yönünün tersinde döndüğü görüldü.
  • Kutup ışıkları gözlendi.
  • Atmosferin üst kesimlerindeki helyum oranı ölçüldü, Güneş ve gezegenleri oluşturan ilksel Güneş Bulutsusu'nun bileşimi hakkında ipuçları sağlandı.

Ulysses uzay aracı

Güneş çevresinde kutupsal bir yörüngeye oturtulmak üzere 1990 yılında fırlatılan Ulysses uzay aracı, bu yörüngenin gerektirdiği ivmeyi kazanması amacıyla Jüpiter'in yakınından geçerek gezegenin çekim gücünden yaralanabileceği bir yol izledi. 8 Şubat 1992'de Jüpiter'in 450.000 km. kadar yakınından geçen araç, bu fırsatı değerlendirerek 2-14 Şubat tarihlerini kapsayan dönemde Jüpiter'in manyetosferi üzerinde yoğunlaşan gözlemlerde bulundu. İo Plazma Torus'u içinden geçerek ölçümler yaptı, manyetosferin çeşitli bölgelerinde manyetik alan, değişik frekanslarda ışınımlar, yüksek enerjili parçacıklar, ve plazma bileşenlerini hedef alan çok sayıda gözlem yaptı. Jüpiter yakın geçişi sonrasında kazandığı kutupsal yörüngesi sayesinde, Jüpiter manyetosferinin tutulum düzlemi dışındaki daha önce araştırılmamış bölgelerinde de gözlem yapma olanağını sağladı.

Ulysses, Kasım 2003-Nisan 2004 arasında ikinci kez Jüpiter'in yakınından geçti.

Galileo programı

1989 yılında fırlatılan Galileo uzay aracı, bir yörünge aracı ve bir atmosferik sonda olmak üzere iki ayrı birimden oluşmakta idi.

  • Galileo'nun Jüpiter ile ilgili görevi planlanandan önce başladı. Temmuz 1994'te, gezegene ulaşmasından 18 ay önce, Shoemaker-Levy kuyrukluyıldızının Jüpiter'e çarpmasını yeryüzünden yapılan gözlemlere oranla daha elverişli açılardan görüntüledi.
  • Jüpiter'e yaklaşırken uzay aracından ayrılan atmosferik sonda 7 Aralık 1995'te gezegen atmosferine daldı, bir paraşüt yardımıyla yavaşlayarak, atmosferin derinliklerinde yüksek basınç ve ısı nedeniyle tahrip olmadan önce 58 dakika süreyle veri topladı ve yeryüzüne gönderdi. Ölçümler, atmosferin beklenenden çok daha kuru olduğu izlenimini verdi, ancak sonradan sondanın giriş noktasının alçalan kuru ve soğuk hava akımlarına denk gelen bir atmosfer bölgesinde olduğu görüşü ağırlık kazandı. Sonda, beklenen değerlerin beşte biri kadar su buharı, beklenenin yarısı kadar helyum ve metan düzeyleri gözledi. Yer atmosferinde gözlenenden 10 kat fazla yıldırım etkinliği saptandı.
  • Galileo yörünge aracı, 7 Aralık 1995'te Jüpiter çevresinde yörüngeye girdi ve görevini tamamladığı 2003 yılına dek 35 tur tamamladı, İo, Europa, Ganymede, Callisto, ve Amalthea ile ilgili gözlemleri gerçekleştirdiği 34 yakın geçiş yaptı. Uyduların yüzey şekilleri ve iç yapıları ile ilgili geniş bilgi edinilmesini sağladı.
  • Jüpiter halkalarının oluşumunda kozmik çarpışmalar sonucunda iç uydulardan kopan maddelerin katkısı anlaşıldı.
  • Jüpiter manyetosferinin kendine özgü pek çok özelliği ortaya çıkarıldı.
  • 21 Eylül 2003'te uzatılmış görevini tamamlayan Galileo, yaşam barındırma olasılığı bulunan uydulara zarar vermemesi için, Jüpiter üzerine düşürülerek parçalandı.

Cassini-Huygens programı

Satürn ve sisteminin araştırılması amacıyla 1997 yılında fırlatılan Cassini-Huygens uzay aracı, Jüpiter'in çekim gücünden yararlanarak yolculuğun hızlandırılabilmesi için bu gezegenin yakınından geçen bir rota izledi. 30 Aralık 2000 tarihinde Jüpiter yakın geçişini gerçekleştiren sonda, bu tarihin öncesi ve sonrasını kapsayan birkaç aylık süre içinde bilimsel aygıtlarını Jüpiter hakkında veri toplamak için çalıştırdı.

  • Jüpiter'in bugüne dek elde edilen en yüksek çözünürlüklü görüntüleri kaydedildi.
  • Jüpiter'in atmosferinde koyu renkli görünümü ile ayırdedilen kuşakların, alçalan gaz kütlelerinin oluşturduğu siklon alanları olduğu yönündeki yerleşmiş görüşü sarsan bulgular elde etti. Ayrıntılı görüntülerde, bu koyu kuşaklarda herbiri yükselen gaz kütleleri içeren açık renkli bulut kümelerinden oluşmuş çok sayıda küçük fırtına hücresinin bulunduğu ve net gaz hareketinin koyu kuşaklarda da yukarı doğru olduğu ortaya çıktı.
  • Jüpiter halkalarının neden olduğu ışık saçılmasının ölçümü, halkaların düzensiz ve köşeli parçacıklardan oluştuğunu ortaya koydu.

Chandra X-ışını gözlem uydusu ve Hubble uzay teleskopu

1999 yılında fırlatılarak Dünya etrafındaki yörüngesine oturtulan Chandra uydusu, X-ışını dalga boyunda yaptığı gözlemlerde, Jüpiter'in kutup bölgelerinde gözlenen dünyadakinden 1000 kat daha güçlü kutup ışıklarının elektronlarını kaybetmiş yüksek enerjili oksijen ve benzeri iyonların atmosfer ile etkileşimi sonucunda ortaya çıktığını belirledi. Eşzamanlı olarak Hubble uzay teleskopundan alınan görüntülerde hidrojen iyonlarında artışa rastlanmaması, bu parçacıkların Güneş kaynaklı olamayacağını ortaya koydu. Böylece Jüpiter'de gözlenen kutup ışıklarının Yer atmosferindekinden farklı bir mekanizma ile oluştuğu ve büyük olasılıkla İo'dan kopan atomların Jüpiter manyetosferinde hızlanarak atmosfere çarpmalarının sonucu oldukları varsayımı güçlendi.

Tasarı aşamasındaki araştırmalar

  • Plüton ve uydusu Charon'u incelemek üzere NASA tarafından Ocak 2006'da fırlatılması planlanan ve hız kazanması için Jüpiter'in yakınından geçen bir rota izlemesi öngörülen New Horizons uzay sondası, Şubat-Mart 2007'de Jüpiter ile ilgili gözlemler yapabilecektir.
  • NASA tarafından geliştirilmekte olan Prometheus programının ilk aşaması JIMO (Jupiter Icy Moons Orbiter-Jüpiter Buz Uyduları Yörünge Aracı), Nükleer-Elektrik İtme Gücü ile hareket eden bir uzay sondası ile Jüpiter'in Galilei uyduları'nın ayrıntılı incelenmesini olanaklı kılacaktır. Bu projenin en erken fırlatma tarihi olarak 2015 yılı önerilmektedir.

Gözlem koşulları

Bir dış gezegen olan Jüpiter, güneş çevresinde 12 yıllık dolanma süresi ile 13 ay süren kavuşum devrine sahiptir ve her yıl bir burçtan diğerine geçer. Venüs'ten sonra gökyüzünde izlenebilen en parlak gezegendir. Seyrek olarak, kısa dönemler için Mars parlaklıkta Jüpiter'i geçebilir. Kavuşum dönemini kapsayan 1-2 aylık dönem dışında yıl boyunca rahatlıkla çıplak gözle izlenir. Yılın büyük bir bölümünde, en parlak yıldız olan Sirius'un -1,5 düzeyindeki parlaklığını aşar ve en uygun karşı konum koşullarında -2,7 gibi bir parlaklığa ulaşır. Bu yönleriyle amatör gözlem için Venüs ve Mars'tan daha elverişlidir. Karşı konumda 50 saniyeye yaklaşan görünür çapı ile insan gözünün 1 dakika olan ayırma gücünün sınırına çok yaklaşır ve küçük büyütmeli bir dürbünle gezegenin diski seçilebilir. Amatör bir teleskopla Jüpiter'in kuşakları, Büyük Kırmızı Leke ve gezegenin kendi etrafında dönüşü, Galilei uyduları ve gezegen etrafındaki hareketleri izlenebilir.

Güneş Sistemi'nde Jüpiter'in özel yeri

Bazı özellikleri, Jüpiter'i eşşiz kılmaktadır:

  • Jüpiter, Güneş Sistemi'nin en büyük gezegeni olmakla kalmaz, kütlesi tek başına diğer tüm gezegenlerin toplam kütlesinin 2,5 katına ulaşır.
  • Kendi etrafında dönüş süresi en kısa olan gezegendir.
  • En güçlü manyetik alana ve en büyük manyetosfere sahip gezegendir.
  • Büyüklük ve çeşitlilik açısından en zengin uydu sistemine sahip gezegendir. Güneş Sistemi'nin en büyük gezegen uydusu Ganymede, Jüpiter etrafında dönmektedir.

Satürn (gezegen)

Satürn

Satürn Voyager 2 den çekilmiş
Yörünge Özellikleri
Yarı büyük eksen 1.426.725.400 km.
9,537 A.Ü.
Günberi 1.349.467.000 km.
9,021 A.Ü.
Günöte 1.503.983.000 km.
10,054 A.Ü.
Yörünge dışmerkezliği 0,054
Yörünge eğikliği 2,48o
Dolanma süresi 10.755,7 gün
29,4 yıl
Kavuşum süresi 378,09 gün
Yörünge hızı
ortalama
9,69 km/saniye
Gözlem Özellikleri
Yer'e en yakın konumda
Yer'e Uzaklık 1.195.500.000 km.
8 A.Ü.
Görünür çap 20,1 ark saniye
Görünür parlaklık -0,3
Yer'e en uzak konumda
Yer'e Uzaklık 1.658.500.000 km.
11,08 A.Ü.
Görünür çap 14,5 ark saniye
Görünür parlaklık 1,2
Fiziksel Özellikler
Ekvator çapı
(1 bar düzeyinde)
120.536 km.
(9,44 x Yer)
Kutupsal çap
(1 bar düzeyinde)
108.728 km.
Basıklık 0,097
Hacim 689 x Yer
Kütle 95 x Yer
Yoğunluk 0,69 g/cm3
Eksen eğikliği 26,73o
Dönme süresi 10 sa. 39 dk. 22 s.
Ekvatorda yerçekimi
(1 bar düzeyinde)
8,96 m/s2
(0,91 x Yer)
Ekvatorda kurtulma hızı
(1 bar düzeyinde)
35,5 km/saniye
(3,17 x Yer)
Beyazlık
(albedo)
0,47
Etkin sıcaklık 95 K

Satürn Güneş sisteminin güneşten yakınlık sırasına göre 6. gezegenidir. Türkçesi Sekendizdir. Büyüklük açısından Jüpiter'den sonra ikinci sırada gelir. Adını Roma tarım tanrısı Saturnus'tan alır. Arapça kökenli Zühal adı Türkçe'de giderek daha az kullanılmaktadır. Sekendiz olarak da bilinir. Çıplak gözle izlenebilen 5 gezegenden biri (diğerleri, Merkür, Venüs, Mars, ve Jüpiter) olarak eski çağlardan beri insanoğlunun dikkatini çekmiştir. Büyük ölçüde hidrojen ve helyumdan oluşmakta ve gaz devleri sınıfına girmektedir.

Konu başlıkları

Fiziksel özellikler

Satürn, tüm gezegenler arasında yoğunluğu en düşük olanıdır. Su yoğunluğu ile karşılaştırıldığında 0.69 olan bu değer, Yerküre'nin yoğunluğunun % 12'si kadardır. Düşük yoğunluk, gezegenin akışkan yapısı ve kendi çevresindeki dönüş hızının yüksekliği ile birleşerek, Satürn'e ekvatorda geniş, kutuplarda basık elipsoid görüntüsünü vermektedir. Beyazlık derecesi (albedo) 0.47 olan gezegen, böylece yüzeyine düşen güneş ışığının yarıya yakınını görünür tayfta yansıtmaktadır. Ancak kızılötesi alandaki ışınım ölçüldüğünde, Satürn'ün Güneş'ten aldığı enerjinin 3 kat fazlasını dışarı yaydığı görülür. Bu nedenle gezegen, Güneş'e olan uzaklığına göre hesaplanan 71K' den (-202°C) çok daha yüksek bir etkin sıcaklığa sahiptir ve 95K (-178°C) sıcaklığında bir kara cisim gibi ışır. Satürn'ün kendi içinde yarattığı bu enerji fazlası, gezegenin yerçekiminin etkisi ile yavaşca kendisi üzerine çökerek küçülmesi sırasında dönüştürülen potansiyel enerji ile açıklanmaktadır. Kelvin-Helmholtz mekanizması olarak adlandırılan ve daha sınırlı ölçüde Jüpiter'de de gözlenen bu olgu Satürn'ün yarattığı ısıl enerji fazlasını tek başına açıklamaya yeterli değildir. Ek bir mekanizma olarak, gezegenin yüzeye yakın katmanlarında hidrojen ile karışım halinde bulunan helyumun ağırlığı nedeniyle merkeze doğru süzülerek göç etmesi sırasında potansiyel enerjisinin bir kısmını açığa çıkarması önerilmektedir.

İç yapı

Gaz devleri, içerdikleri elementlerin oranlarına göre iki alt gruba ayrılırlar. Uranüs ve Neptün 'buz' ve 'kaya' oranı daha yüksek Uranian gezegenler grubundadır. Satürn ise Jüpiter ile birlikte, adını yine Jüpiter'den alan Jovian gezegenler grubu içindedir. Jovian gezegenlerin kabaca Güneş'i ve benzer yıldızları oluşturan maddeleri bu yıldızlardakine yakın oranlarda içerdiği düşünülür. 20. yüzyıl başlarından itibaren, gezegenlerin çap, kütle, yoğunluk, kendi etrafında dönme hızları, uydularının davranışları gibi verilerden yola çıkılarak iç yapıları hakkında ortaya atılan görüşler, daha sonra tayfölçümsel çalışmalarla ve son otuz yıl içinde gerçekleştirilen birçok uzay aracı araştırması ile zenginleştirilmiş ve günümüzde oldukça tatminkar modeller geliştirilmiştir.

Bu bilgiler çerçevesinde, Güneş sisteminin ilksel bileşenlerine paralel biçimde Satürn'ün kütlesinin büyük kısmını hidrojen ve helyumun oluşturduğu varsayılır. Hidrojen/Helyum kütle oranı 75-25 civarındadır. Daha ağır elementlerin Güneş Bulutsusu içindeki toplam payı %1 iken, hafif bir zenginleşme ile Satürn'de %3-5 arasında olabileceği hesaplanmaktadır. Bu yapı taşları özgül ağırlıklarına göre tabakalanmış durumdadır:

  • Satürn'ün merkezinde demir ve ağır metallerle birlikte bunları çevreleyen daha hafif elementlerin oluşturduğu bir 'buz' ve 'kaya' tabakasından oluşan bir çekirdek bulunur. Gezegenin ileri derecedeki basıklığının nedeni olarak büyük ve yoğun bir çekirdek varlığı gösterilmektedir. Bazı hesaplamalar, gözlenen basıklık oranını sağlayabilmek için çekirdeğin gezegen kütlesinin dörtte biri kadar büyük bir kısmını oluşturması gerektiği sonucuna ulaşmaktadır. Bu, 25 Yer kütlesine sahip ve yarıçapı 10.000 kilometreyi aşan bir kaya, buz ve metal kütlesi anlamına gelir ve Satürn'ün ağır elementler açısından tahmin edilenden daha da zengin olabileceğini gösterir. Satürn‘ün merkezinde sıcaklığın 12.000K, basıncın 10 megabar (10 milyon atmosfer) üzerinde olduğu tahmin edilir.
  • Çekirdeği çevreleyen alanda metalik hidrojenden oluşmuş manto tabakası yer alır. Hidrojen 3 ila 4 Mbar'dan daha yüksek basınçlarda devreye giren van der Waals kuvvetlerinin etkisi ile moleküler yapısını kaybederek metalik özellikler kazanır, ısıl ve elektriksel iletkenliği çok artar. Jüpiter'de olduğu kadar büyük olmayan bu katmanın, yaklaşık 20.000 km.lik bir kalınlıkla çekirdekten gezegen yarıçapının yarısı kadar bir uzaklığa yayıldığı sanılır.
  • En dışta, gezegenin hacminin %90'ını oluşturan en az 30.000 km. kalınlığında moleküler hidrojen(H2) tabakası bulunur. Gezegenin yüzeyine yaklaşıldıkça basınç, ısı ve yoğunluk düşer, hidrojen sıvıdan gaza dönüşür ve giderek atmosfer olarak adlandırılabilecek ortama geçilir.

Bu şemada helyumun konumu çok iyi aydınlatılabilmiş değildir. Satürn atmosfer ve dış tabakalarında helyum oranının beklenenden çok daha az olduğu gözlenmiştir. Buna, Jüpiter'e oranla daha soğuk olan gezegende, helyumun en dıştan başlayarak yoğunlaşıp bir süperakışkan şeklinde gezegenin içine doğru yağdığı ve gezegen yüzeyindeki oranının gittikçe düştüğü şeklinde bir açıklama getirilmiştir. Bu olasılığın geçerli olması durumunda helyumun sıvı hidrojen tabakaları içinden geçerek manto ve çekirdek arasında ayrı bir katman oluşturması beklenir. Bugün, metalik hidrojen katmanının da sıvı nitelikte olduğu görüşü yaygın olarak kabul edilmektedir. Katı fazdaki bir manto tabakasının Satürn'ün ürettiği büyük ısıyı dışarı iletemeyeceği ve bu aktarım için madde akımına (konveksiyon) olanak sağlayan sıvı bir ortamın gerekli olduğu düşünülmektedir. Konveksiyon akımlarının katmanlar arasında ne ölçüde madde alışverişine izin verdiği bilinmemektedir. Güçlü yerçekiminin ve akışkan yapının sonuçta ağır elementleri sürekli olarak merkeze doğru çökmeye zorlayacağı tahmin edilmekle birlikte, buz ve kaya oluşturan bileşiklerin tümünün çekirdeğe hapsolmuş durumda olmayabileceği, bir kısmının metalik ve moleküler hidrojen katmanlarında eriyik halinde ya da askıda bulunabileceği varsayılabilir.

Atmosfer



Gaz Oran
Hidrojen
H2
<0.94
Helyum
He
<0.06
Metan
CH4
0.002
Su
H2O
0.001
Amonyak
NH3
0.0001
Etan
C2H6
5x10-6
Hidrojen sülfid
H2S
1x10-6
Hidrojen fosfür
PH3
1x10-6
Asetilen
C2H2
1x10-7

Satürn kalın ve karmaşık bir atmosfer tabakası ile çevrilidir. Atmosferin temel bileşeni, bir gaz devi gezegenden bekleneceği gibi, Güneş Bulutsusu’nun içeriğine benzer olarak, hidrojen gazıdır. Ancak, Jüpiter'in atmosferinden farklı olarak, helyum oranının beklenenden düşük olduğu gözlenir.Bu olgunun, helyumun kütleçekimi etkisi ile gezegenin daha derinlerine doğru çökmesi ile ilişkili olabileceği düşünülür. Satürn atmosferi %94 hidrojen ve %6 helyumdan oluşmaktadır. Bunları %0,2 oranla metan (CH4), %0,1 oranla su buharı (H2O), ve %0,01 oranla amonyak (NH3) izler. Azot, hidrojen, karbon, oksijen, kükürt, fosfor ve diğer elementleri içeren çeşitli bileşiklere milyonda bir düzeyini geçmeyen oranlarda rastlanır.

Aslında gaz devlerinin belirli bir yüzeyi olduğu söylenemez, gezegenden atmosfer olarak adlandırılabilecek en dış gaz tabakasına doğru kesintisiz, yumuşak bir geçiş sözkonusudur. Bu tür gezegenlerin çapları hesaplanırken 1 bar (yaklaşık 1 atmosfer) sınırının dışında kalan kısım dikkate alınmaz, basıncın 1 barı aştığı noktadan itibaren tüm hacim gezegenin sınırları içinde kabul edilir. Ancak çoğu zaman, atmosfer olarak adlandırılan alan, hidrojen gazı yoğunluğunun sıvı hidrojen yoğunluğu düzeyine çıktığı 10.000 bar basınç sınırına yani gezegenin binlerce kilometre içine dek genişletilir.

Satürn’ün daha zayıf çekim gücü nedeniyle, atmosferi gezegenin merkezinden uzaklık bakımından daha geniş bir alana yayılmıştır; derinlikle ısı ve basınç artışı Jüpiter’e oranla daha sınırlıdır. Bu nedenle, atmosferin alt sınırı olarak kabul edilebilecek fizik koşullara çok daha derinlerde ulaşılır. Aynı şekilde, atmosferin çeşitli yükseltilerinde görülen değişik bileşiklerin yoğunlaşmasından oluşmuş bulutlar Jüpiter’e oranla birbirinden daha aralıklı yer alırlar. En yüksek bulutlar, tropopoz düzeyinin yaklaşık 100 km. altında amonyak, 200 km. altında amonyum hidrosülfid ve 300 km. altında su buzundan oluşmuş bulutlardır.

Bulutlar ve atmosfer akımları

Jüpiter’dekine benzer ekvatora paralel bulut kuşakları Satürn atmosferinde de gözlenir, ancak kuşaklar arasındaki renk ve kontrast farkı aynı derecede çarpıcı değildir. Bu silik görünümün nedeni bulut katmanlarının daha geniş bir yükselti aralığına dağılmış ve kalın bir atmosfer kütlesi ile örtülmüş olmalarıdır. Birbirine komşu kuşaklarda bulutların zıt yönde ve büyük bir hızla ilerledikleri görülür. Kuşakların dağılım ve hareketleri kuzey ve güney yarımkürelerde Jüpiter’e oranla daha simetriktir. Batıdan doğuya doğru 1800 km./saat hızında kesintisiz bir akımın gözlendiği ekvator kuşağı, kuzey ve güney yönünde 35. enlem derecelerine kadar uzanarak gezegenin en büyük meteorolojik yapısını oluşturur.

Yeryüzünden yapılan gözlemlerde bazıları devasa boyutlara ulaşan 'beyaz leke'ler gözlenmiştir. Bu oluşumların, günler, bazen haftalar süren fırtına alanları olduğu düşünülür. Cassini uzay sondası kısa süre içinde birçok yeni fırtına alanı saptamıştır.

Satürn'ün kendi ekseni etrafında dönüşü

Katı bir yüzeye sahip olmayan Satürn'ün dönüş özelliklerinin, atmosfer yapılarının gözlenen hareketlerine göre belirlenmesine çalışılmıştır. Ekvator bölgesi ile kutupların farklı devirlerle dönmesi, 'Sistem I' ve 'Sistem II' olmak üzere iki ayrı dönme süresi tanımlanmasına yol açmıştır. Ekvator bölgelerinin dönüşü 10 saat 14 dakika 00 saniyede tamamlanır ve Sistem I olarak adlandırılır. Kutup bölgelerinde dönüş süresi 10 saat 39 dakika 24 saniyedir ve Sistem II adını alır. Satürn'den yayılan mikrodalga ve radyo dalgaboyundaki ışınımların ise 10 saat 39 dakika 22,4 saniyelik bir dalgalanma göstermelerine dayanarak, gezegenin manyetik alanını belirleyen metalik hidrojen kütlesinin bu hızla dönmekte olduğu sonucu çıkarılmıştır. 'Sistem III' adı verilen bu periyod Satürn'ün gerçek dönüş hızı olarak kabul edilir, ve bu değerin kutuplardaki dönüş hızı ile hemen hemen aynı olduğu, ekvatorda ölçülen farklı hızın bu bölgelerdeki bulutların 1800 km./saat hıza ulaşan rüzgarlar nedeniyle doğuya doğru hareket etmelerinden kaynaklandığı dikkati çeker. Voyager 1 ve Voyager 2 uzay sondalarının 1980 ve 1981 yıllarındaki geçişleri sırasında yaptıkları duyarlı ölçümlere dayanan bu değer, 1997 yılında Paris Gözlemevi gökbilimcileri tarafından 6 dakika daha uzun olarak ölçüldü. Cassini uzay aracının 2004 yılında Satürn'e yaklaşmakta iken yaptığı ölçümlerde belirlediği 10 saat 45 dakika 45 saniye uzunluğundaki radyo dönüş periyodu de bu son bulguyla uyumlu idi. Gezegenin dönüş hızında kısa sürede bu denli önemli değişikliklerin olanak dışı olduğu bilinmekte, öte yandan Voyager ve Cassini sondalarının güvenilirliği tartışılmamaktadır. Radyo kaynağının dönüş hızındaki bu sapmaların aydınlatılması, gezegenin iç yapısı hakkında değerli bilgiler sağlayabilecektir.

Halkalar

Cassini uzay aracı tarafından çekilen bir Satürn fotoğrafı
Cassini uzay aracı tarafından çekilen bir Satürn fotoğrafı

Satürn'ün ilk bakışta dikkati çeken belirleyici özelliği halka sistemidir. Satürn‘ün halkaları, gökyüzünün basit teleskoplarla izlenmeye başlandığı 17. yüzyıldan bu yana Satürn'ü diğer gezegenlerden ayırdeden eşsiz bir yapı olarak bilinegelmiştir. 1970'lerden sonra diğer gaz devlerinin de halkaları bulunduğu keşfedilmiştir.

Halkalar, ekvator düzleminde gezegenin merkezinden uzaklıkta 67.000 km. ile 480.000 km. arasında kalan alanı kaplamaktadır. Satürn'ün yarıçapı RS=60.250 km. olarak alınırsa halkaların iç sınırının gezegenin yüzeyine 6.700 km. uzaklıkta bulunduğu görülür. Dış sınırı ise Satürn için yaklaşık 2,5 RS yani 150.000 km. olan Roche limitinin çok ötesindedir. Halkaların kalınlığı ise sadece 100 metre kadardır. Satürn halkaları çoğunluğunun çapı 1 cm. ile 10 m. arasında değiştiği düşünülen büyük sayıda buz parçacıklarından oluşmuştur. Halkaların yoğunluğunun gezegen merkezinden uzaklığa göre büyük değişimler gösterdiği, bazı alanlarda boşluklar bulunduğu bilinmektedir. Bunların Satürn uydularının çekim etkileri ile ilişkisi gösterilmiş, hatta yörüngesi halkaların içinde bulunan ve çoban uydular olarak adlandırılan küçük uyduların halkaların bilinen yapısının korunmasındaki rolleri aydınlatılmıştır. Ancak son 25 yılda uzay aracı araştırmalarından elde edilen büyük miktardaki yeni bilgi, Satürn halkalarının bugün için de tam olarak açıklanamamış birçok özelliğini ortaya koymaktadır.

Manyetosfer

Satürn güçlü bir manyetik alana sahiptir. Jüpiter'in manyetik alanının yirmide biri kadar güç sağlayan bu çift kutuplu, Yer ile karşılaştırıldığında 800 kata ulaşan büyüklüğü ile devasa ölçektedir. Gezegenin manyetik ekseni dönme ekseni ile hemen hemen çakışır ve Jüpiter'de olduğu gibi manyetik kutupları Yer'in kutuplarına göre ters yerleşmiş durumdadır. Bu çift kutuplunun yanı sıra, Satürn'ün manyetik alanının, yapısını karmaşıklaştıran bir dört kutuplu ve bir sekiz kutuplu bileşeni bulunmaktadır.

Satürn, manyetik alanının Güneş rüzgarı ile etkileşimi sonucunda büyük bir manyetosfer oluşur. Bu bölge, güneş kökenli yüksek enerjili parçacıklardan oluşan plazma akımının gezegenin manyetik alanı tarafından saptırılarak engellendiği, Satürn'ün Güneş'e dönük yüzünde 300-1000 km./saniye hızındaki Güneş rüzgarı tarafından gezegene doğru itilen, karanlık yüzünde ise yüzlerce milyon kilometre uzunluğunda bir ‘manyetik kuyruk‘ şeklinde devam eden, damla biçiminde bir hacmi kapsar. Manyetosferin en dışında Güneş rüzgarının çarparak hızla yavaşladığı ve yön değiştirdiği bir şok dalgası bulunur. Güneş etkinliğine göre gezegene uzaklığı değişen bu sınır, Cassini uzay sondası tarafından Satürn'den Güneş doğrultusunda 3 milyon km. uzaklıkta saptanmıştır. Daha içeride ise güneş kökenli parçacıkların aşamayarak çevresinden dolaşmak zorunda kaldığı manyetopoz yer alır. Manyetopoz, Satürn'ün manyetosferini sınırlar. Manyetosfer içinde iyonize atomlar, serbest elektronlar, yüklü toz tanecikleri ve nötr atom ve molekülleri içeren bir plazma bulunur, ancak bu plazmanın yoğunluğu Jüpiter'dekine oranla çok azdır. Bunun nedenleri, Satürn'ün manyetosferi içinde iyonize madde kaynağı olabilecek İo benzeri bir uydusunun olmaması ve parçacıkların Satürn‘ün halkaları tarafından yakalanarak sürekli bir şekilde ortadan kaldırılmalarıdır.

Serbest kalan yüklü parçacıklar, manyetik alan çizgileri boyunca toplanarak, Van Allen kuşakları benzeri ışınım alanları oluştururlar. Satürn'ün manyetik kutuplarındaki açık manyetik çizgiler boyunca ilerleyerek atmosferin yüksek tabakalarında kutup ışıklarının ortaya çıkmasına neden olurlar.

Uydular

Satürn'ün resmi olarak ad verilmiş 34 uydusu vardır. 2004 yılı içinde gözlenen ve 4 Mayıs 2005'te Uluslararası Gökbilim Birliği'nin 8523 sayılı sirküleri ile duyurulan 12 yeni uydu ve 2005 yılı içinde gözlenen ve 5 Mayıs 2005' te 8524 sayılı sirküler ile duyurulan bir yeni uydu ile bu sayı 47'ye ulaşmaktadır. Henüz doğrulanmamış uydular bu sayının dışındadır. Satürn'ün uydularının listesi, Satürn'ün doğal uyduları makalesinde yer almaktadır

Ayrıca 2004 yılında satürne gönderilen uzay aracı cassini satürn etrafındaki uyduları tespit etmiş ve 2 önemli uydusuna S/2004 S1 DİĞERNE İSE S/2004 S2 adını vemiştir.

Satürn araştırmalarının tarihçesi

  • Eski çağlardan günümüze ulaşan kaynaklarda Satürn, Ay, Güneş, Merkür, Venüs, Mars, ve Jüpiter ile birlikte görünür hareketlerinin diğer yıldızlardan farklılığıyla tanınan 7 gökcisminden biri olarak gösterilir. Bu yönüyle, antik gökbilim için olduğu kadar astroloji açısından da önem taşıyan gezegen, birçok dilde haftanın yedi gününe adını veren varlıklardan biri olarak, tarihöncesinden günümüze insan kültüründe yerini korumuştur.
  • 1610 yılında Galileo Galilei kendi yaptığı teleskop yardımı ile gözlediği Satürn'ün küresel bir yapısı olduğunu farketti, gezegenin her iki yanında kendi deyimi ile 'kulak' olarak nitelediği ve sonradan Satürn‘ün halkaları oldukları anlaşılacak oluşumları gördü.
  • 1655'te Hollandalı bilim adamı Christiaan Huygens Satürn'ün en büyük uydusu Titan'ı keşfetti. Huygens 1659'da Galilei'nin görmüş olduğu oluşumun Satürn'ün halkası olduğunu açıkladı.
  • 1670'ler ve 1680'lerde Fransız-İtalyan gökbilimci Giovanni Domenico Cassini, halkalar içindeki Cassini bölümünü ve dört yeni uyduyu daha (Japetus, Rhea, Tethys, Dione)keşfetti.
  • 1789'da İngiliz gökbilimci Sir William Herschel Satürn'ün basıklık derecesini hesapladı, iki yeni uyduyu daha (Mimas, Enceladus)keşfetti.
  • 1837'de Alman gökbilimci Johann Encke halkalardaki kendi adıyla anılan boşluğu keşfetti.
  • 19.cu yüzyılın ikinci yarısında Edouard Roche, James Clerk Maxwell, Daniel Kirkwood halkaların yapısına ilişkin görüşleri geliştirdiler.
  • 1848'de William Lassell Hyperion'u, 1898'de William Henry Pickering Phoebe'yi keşfetti.
  • 1903 yılında Satürn yüzeyinde bugün fırtına alanları ile ilişkilendirilen beyaz lekeler ilk kez gözlendi.
  • 1966'da Janus ve Epimetheus keşfedildi.

Pioneer 11 uzay aracı

1973 yılında fırlatılan Pioneer 11 uzay sondası, Aralık 1974'te Jüpiter yakın geçişini gerçekleştirdikten sonra 1 Eylül 1979'ta Satürn'ün 21.000 km. yakınından geçti. Sınırlı teknik donanıma sahip olmasına karşın bu araç daha sonra gerçekleştirilen uçuşların planlanması için yaşamsal önem taşıyan bilgiler topladı.

  • Satürn'ün boyutları ve çekim gücü duyarlı biçimde ölçülerek yoğunluğunun ve kütlesinin daha büyük kesinlikle hesaplanmasına olanak sağlandı.
  • Satürn'ün ve uydularının birçok fotoğrafı elde edildi. Gezegen ve halkaları ilk kez karanlık yüzlerinden gözlendi.
  • F halkası keşfedildi.

Voyager 1 ve 2 uzay araçları

1977 yılında fırlatılan ve birbirinin aynı olan Voyager 1 ve Voyager 2 uzay araçları sırasıyla Kasım 1980 ve Ağustos 1981 tarihlerinde Satürn'ün yakınından geçerek gözlemlerde bulundular.

  • Satürn atmosferindeki Helyum oranının Jüpiter'dekine göre az olduğu anlaşıldı.
  • Gezegenin ve uydularının çok sayıda yüksek çözünürlüklü görüntüsü elde edildi.
  • Satürn atmosferindeki bantlar, geçici oval yapılar gözlemlendi. 1800 km./saat hızına ulaşan büyük ölçekli atmosfer akımları saptandı.
  • Gezegenin karanlık yüzünden radyo dalgaları ile yapılan gözlemlerle atmosferin değişik düzeylerindeki sıcaklıklar ölçüldü.
  • Kutup ışıkları gözlendi. Bu arada, orta enlemlerde mor ötesi bantta kutup ışıklarına benzer, nedeni açıklanamayan ışınımlar saptandı.
  • Halkaların ayrıntılı yapısı gözlendi, sayılamayacak kadar çok miktarda küçük halkacıklardan oluştukları anlaşıldı. Yeryüzünden yapılan gözlemlerde sınırlı şekilde görülebilen D ve E halkalarının varlığı kanıtlandı, G halkası keşfedildi.
  • B halkasında 'araba tekerleklerinin çubuklarını' andıran ışınsal yoğunluk değişimleri gözlendi.
  • Satürn'ün 4 yeni uydusu keşfedildi. Bunlardan Pan'ın farkedilmesi, Voyager 2 uzay aracının gezegeni ziyaretinden 9 yıl sonra eldeki fotoğrafların yeniden incelenmesi sırasında gerçekleşti.

Cassini-Huygens programı

Cassini'den gözüken Güneş tutulması
Cassini'den gözüken Güneş tutulması

Satürn ve sisteminin araştırılması amacıyla 1997 yılında fırlatılan Cassini-Huygens uzay aracı, gezegenlerin çekim gücünden yararlanarak yolculuğun hızlandırılabilmesi için Venüs (2 kez), Yer ve Jüpiter yakın geçişlerini gerçekleştirdikten sonra, 1 Temmuz 2004'te Satürn çevresinde yörüngeye girdi. İki ayrı uzay sondasından oluşan araçtan, Huygens iniş aracı ayrılarak 14 Ocak 2005'te Satürn'ün en büyük uydusu Titan üzerine iniş yaptı. Cassini yörünge aracı ise Satürn çevresinde değişen yörüngeler izleyerek gezegen ve çeşitli uyduları ile ilgili gözlemlerine başladı.

  • Satürn'ün kendi etrafında dönüş hızı ile ilgili olarak 1997 yılında Fransız gözlemcilerin saptadığı ve daha önceki bilgilerle çelişen veriler doğrulandı ve gezegenin radyo kaynağının dönüş periyodu 10 saat 45 dakika 45 saniye olarak belirlendi.
  • Araç, yörünge giriş manevrasından önce Satürn halka düzlemini kuzeyden güneye doğru geçti. F ve G halkaları arasındaki boşluktan yapılan bu geçiş, boşluk olarak kabul edilen bölgedeki parçacıkların miktarı konusunda bilgi verdi.
  • Phoebe, Titan, Japetus, ve Enceladus yakın geçişleri gerçekleştirilerek uyduların yüksek çözünürlüklü görüntüleri elde edildi ve bilimsel gözlemler gerçekleştirildi.
  • Huygens sondası, Titan yüzeyine iniş sırasında uydunun atmosferi ve yüzeyi hakkında veriler topladı ve görüntüler elde etti.
  • Satürn'ün 4 yeni uydusu keşfedildi.
  • Programın 2008 yılına dek sürdürülmesi planlanmaktadır.

Gözlem koşulları

Bir dış gezegen olan Satürn, Güneş çevresinde yaklaşık 30 yıllık dolanma süresi ve yaklaşık 12.5 ay olan kavuşum dönemi nedeniyle, sabit yıldızlar arasında çok yavaş ilerlediği için aynı takım yıldız içinde 2 yıldan daha uzun süre kalır. Güneşe Jüpiter'den daha uzak ve biraz daha küçük olduğu için Satürn daha sönük görülür. Sarımsı rengi ve 1. kadirden parlaklığı ile yılın büyük bir bölümünde kolaylıkla gözlenebilir. Halkaların konumuna bağlı olarak parlaklığı 30 yıllık dönemlerle -0,3 kadire ulaşabilir. Satürn'ün halkaları orta boy teleskoplar ile ayırt edilebilir. Gezegenin 29,4 yıllık yörünge çevrimi içinde, Dünya iki kez Satürn'ün halkalarının düzleminden geçer, bu durumda halkalar görülemez. Kendi etrafındaki dönme hızının yüksekliği nedeniyle basık bir görünüme sahiptir. Satürn'ün uydularından sadece Titan küçük teleskoplar ile görülebilir....


Güneş Sistemi'nde Satürn'ün özel yeri

Bazı özellikleri, Satürn'ü eşsiz kılmaktadır:

  • Basıklık oranı en yüksek gezegendir. Kutuplar arasındaki çapı ekvator çapından %10 düşüktür.
  • En gelişmiş halka sistemine sahip gezegendir. Halkaların çapı gezegenin çapının 8 katı kadardır.
  • Üzerinde en hızlı rüzgarların estiği gezegendir. Ekvator çevresinde gözlenen sürekli batı rüzgarlarının hızı 1800 km./saati bulur.
  • Yağmur ancak bin yılda bir metan sağanağı şeklinde yağar.

Uranüs (gezegen)

Uranüs

Uranüs (Voyager 2' den çekilmiş)
Gezegenin bulunuşu William Herschel
1781
Yörünge Özellikleri
Yarı büyük eksen 2.872.460.000 km.
19,2 AB
Günberi 2.741.300.000 km.
18,3 AB
Günöte 3.003.620.000 km.
20,1 AB
Yörünge dışmerkezliği 0,046
Yörünge eğikliği 0,77o
Dolanma süresi 30.685,4 gün
84 yıl
Kavuşum süresi 369,66 gün
Yörünge hızı
ortalama
6,81 km/saniye
Uydu sayısı 27
Gözlem Özellikleri
Yer'e en yakın konumda
Yer'e Uzaklık 2.581.900.000 km.
17,3 AB
Görünür çap 4,1 ark saniye
Görünür parlaklık 5,3
Yer'e en uzak konumda
Yer'e Uzaklık 3.157.300.000 km.
21,1 AB
Görünür çap 3,3 ark saniye
Görünür parlaklık 6,0
Fiziksel Özellikler
Ekvator çapı
(1 bar düzeyinde)
51.118 km.
(4,01 x Yer)
Kutupsal çap
(1 bar düzeyinde)
49.946 km.
Basıklık 0,023
Hacim 63 x Yer
Kütle 14,5 x Yer
Yoğunluk 1,27 g/cm3
Eksen eğikliği 97,77o (ters dönüş)
Dönme süresi - 17 sa. 14 dk. 24 s.
(ters yönde)
Ekvatorda yerçekimi
(1 bar düzeyinde)
8,87 m/s2
(0,9 x Yer)
Ekvatorda kurtulma hızı
(1 bar düzeyinde)
21,3 km/saniye
(1,9 x Yer)
Beyazlık
(albedo)
0,51
Etkin sıcaklık 58 K

Uranüs Güneş sisteminin Güneş'ten yakınlık sırasına göre 7. gezegenidir. Çap açısından Jüpiter ve Satürn'den sonra üçüncü, kütle açısından bu iki gezegen ve Neptün'ün ardından dördüncü sırada gelir. Adını Yunan mitolojisi'ndeki gökyüzü tanrısı Uranos'tan (Yunanca'da Οὐρανός, Latinceleştirilmiş şekli ile Uranus) alır. 1781 yılında William Herschel tarafından bulunmuştur. Gaz devleri sınıfına girmektedir.

Konu başlıkları

Yörünge

Uranüs, Güneş çevresinde bir devrini 84 yılda tamamlar. Hafifçe eliptik olan yörüngesi boyunca, Güneş'e uzaklığı 18-20 Astronomi birimi (ortalama 211-421)arasında değişir.

Fiziksel özellikler

Uranüs’ün kütlesi Yer’inkinin 15 katı, hacmi ise 100 katıdır.Uranüs’ün çevresinde ince, keskin hatlı ve koyu renkli 10 halkanın olduğu tespit edilmiştir. Halkaların tümü, yaklaşık 1 m çapında koyu renkli kaya benzeri parçalardan oluşmaktadır. Bunların yapısı henüz belirlenememiştir.Uranüs, kutbu güneşe bakacak şekilde tekerlek gibi döner. Böylece etrafındaki halkalar da dik olarak onunla birlikte döner.

Uranüs’de,Yer’in ve Satürn’ün çevresindekilerle karşılaştırılabilecek ölçüde manyetik alan vardır. Manyetik alanın ekseni,gezegenin dönme eksenine göre 55o eğiktir ve bu diğer gezegenlere oranla oldukça yüksek bir değerdir.Bu eğiklik manyetik alanın, güneş rüzgarı karşında tirbuşan benzeri uzun bir kuyruk yapmasına neden olur. Gezegenin dönme periyodu yaklaşık olarak 17.5 saattir ve dönme ekseni olağandışıdır.Uranüs’ün eriyik halde bulunan ağır bir çekirdeği vardır. Çekirdeğin çevresinde ise su, metan ve amonyaktan oluşan birkaç bin oC sıcaklığında ve binlerce km kalınlığında bir manto yer alır. Bu aşırı sıcak mantonun, üzerindeki atmosferin ağırlığından kaynaklanan devasa basıncın etkisiyle kaynayamadığı ve buranın elektriksel olarak iletken olduğu, gezegenin manyetik alanını sınırlamaktadır.

Atmosfer

  • Etkin sıcaklık 58 K
  • 1 bar basınçtaki sıcaklık 76 K
  • 1 bar basınçtaki yoğunluk 0.42 kg/m3
  • Rüzgar hızı 0 ile 200 m/s arası
  • Skala yüksekliği 27.7 km
  • Ortalama moleküler ağırlık 2.64 g/mol
  • Bileşim: Hidrojen (H2) % 83, Helyum (He) %15, Metan (CH4) %2, Aerosoller: Amonyum buzu; su buzu; amonyum hidrosülfit; Metan buzu

Uydular

Uranüs’ün 27 uydusu bilinmektedir. Jüpiter ve Satürn’den sonra en fazla uyduya sahip olan gezegendir. Beş büyük uydusunun (Miranda, Umbriel, Ariel (uydu), Oberon (uydu) ve Titania) çapı 500–1600 km arasında değişir.

Küçük uydular: Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Belinda, Puck, Caliban, Stephano, Trinculo, Sycorax, Prospero, Setebos, S/1986 U10, S/2001 U2, S/2001 U3, S/2003 U1, S/2003 U2, S/2003 U3

Uranüs'ün uyduları
Uranüs'ün uyduları
Güneş Sistemi

Neptün (gezegen)

Vikipedi, özgür ansiklopedi

Git ve: kullan, ara
Neptün

Neptün (Voyager 2' den çekilmiş)
Gezegenin bulunuşu Galle, Le Verrier, Adams
1846
Yörünge Özellikleri
Yarı büyük eksen 4.495.060.000 km.
30 AB
Günberi 4.444.450.000 km.
29,7 AB
Günöte 4.545.670.000 km.
30,4 AB
Yörünge dışmerkezliği 0,011
Yörünge eğikliği 1,77o
Dolanma süresi 60.189 gün
164,8 yıl
Kavuşum süresi 367,49 gün
Yörünge hızı
ortalama
5,43 km/saniye
Uydu sayısı 8
Gözlem Özellikleri
Yer'e en yakın konumda
Yer'e Uzaklık 4.305.900.000 km.
28,8 AB
Görünür çap 2,4 ark saniye
Görünür parlaklık 7,7
Yer'e en uzak konumda
Yer'e Uzaklık 4.687.300.000 km.
31,3 AB
Görünür çap 2,2 ark saniye
Görünür parlaklık 7,9
Fiziksel Özellikler
Ekvator çapı
(1 bar düzeyinde)
49.528 km.
(3,88 x Yer)
Kutupsal çap
(1 bar düzeyinde)
48.682 km.
Basıklık 0,017
Hacim 58 x Yer
Kütle 17 x Yer
Yoğunluk 1,64 g/cm3
Eksen eğikliği 28,32o
Dönme süresi 16 sa. 6 dk. 36 s.
Ekvatorda yerçekimi
(1 bar düzeyinde)
11,15 m/s2
(1,14 x Yer)
Ekvatorda kurtulma hızı
(1 bar

Güneş

Güneş
Güneş
Gözlem bilgileri
Ortalama uzaklık
(Dünya'dan)
1,496×1011 m
8,31 dakika ışık yılı olarak
Görünen kadir (V) −26,74m [1]
Mutlak kadir 4,83m [1]
Yıldız sınıflandırma G2V
Metallik Z = 0,0177[2]
Açısal çap 31,6' - 32,7' [3]
Yörünge özellikleri
Ortalama uzaklık
(Samanyolu merkezinden)
~2,5×1020 m
26.000 ışık yılı
Galaktik periyot 2,25–2,50×108 yıl
Hız ~2,20×105 m/s
(Gökada merkezinin çevresinde yörünge üzerinde)

~2×104 m/s
(yakınlarda bulunan yıldızların ortalama hızına göreceli olarak)
Fiziksel özellikler
Ortalama çap 1,392×109 m [1]
Dünya'nın 109 katı
Ekvator yarıçapı 6,955×108 m [4]
Ekvator çevresi 4,379×109 m [4]
Basıklık 9×10−6
Yüzey alanı 6,088×1018[4]
Dünya'nın 11.900 katı
Hacim 1,4122×1027[4]
Dünya'nın 1.300.000 katı
Kütle 1,9891 ×1030 kg[1]
Dünya'nın 332.946 katı
Ortalama yoğunluk ≈1,409 ×103 kg/m³[4][1][5]
Değişik yoğunluklar Çekirdek: 1,5×105 kg/m³
Aşağı Fotosfer: 2×10-4 kg/m³
Aşağı Kromosfer: 5×10-6 kg/m³
Ortalama Corona: 10×10-12kg/m³[6]
Ekvator'da yüzey çekimi 274,0 m/s2 [1]
27,94 g
Kaçış hızı
(yüzeyden)
617,7 km/s [4]
Dünya'nın 55 katı
Etkin yüzey sıcaklığı 5.778 K [1]
Corona sıcaklığı ~5×106 K
Çekirdek sıcaklığı ~15,7×106 K [1]
Lüminozite (Lsol) 3,846×1026 W [1]
~3,75×1028 lm
~98 lm/W etkin lüminozite
Ortalama Radyans (Isol) 2,009×107 W m-2 sr-1
Dönme özellikleri
Eksenel eğiklik 7,25° [1]
(tutulum düzlemine)
67,23°
(gökada düzlemine)
Bahar açısı
(Kuzey kutbunun)[7]
286,13°
19 s 4 d 30 sn
Yükselim
(Kuzey kutbunun)
+63,87°
63°52' Kuzey
Yıldız dönem periyotu
(16° enlemde)
25,38 gün [1]
25 g 9 s 7 dk 13 sn[7]
(ekvatorda) 25,05 gün[1]
(kutuplarda) 34,3 gün [1]
Dönme hızı
(ekvatorda)
7,284 ×103 km/s
Fotosfer bileşimi (kütlesel olarak)
Hidrojen 73,46 %[8]
Helyum 24,85 %
Oksijen 0,77 %
Karbon 0,29 %
Demir 0,16 %
Kükürt 0,12 %
Neon 0,12 %
Nitrojen 0,09 %
Silikon 0,07 %
Magnezyum 0,05 %

Güneş, Güneş Sistemi'nin merkezinde yer alan yıldızdır. Orta büyüklükte olan Güneş tek başına Güneş Sistemi'nin kütlesinin % 99,8'ini oluşturur. Geri kalan kütle Güneş'in çevresinde dönen gezegenler, asteroitler, göktaşları, kuyrukluyıldızlar ve kozmik tozdan oluşur. Günışığı şeklinde Güneş'ten yayılan enerji, fotosentez yoluyla Dünya üzerisindeki hayatın hemen hemen tamamının varolmasını sağlar ve Dünya'nın iklimiyle hava durumunun üzerinde önemli etkilerde bulunur.

Samanyolu gökadasında bilinen 200 milyar yıldızdan birisi olan Güneş, kütlesi sıcak gazlardan oluşan ve çevresine ısı ve ışık yayan bir yıldızdır. Güneşin çapı dünyanın çapının 109 katı (1.5 milyon km), hacmi 1,3 milyon katı ve ağırlığı 333.000 katı kadardır. Güneşin yoğunluğu ise Dünyanın yoğunluğunun ¼’ü kadardır. Güneş kendi ekseni etrafında saatte 70.000 km hızla döner. Bir turunu ise 25 günde tamamlar. Güneşin yüzey sıcaklığı 5500 °C ve çekirdeğinin sıcaklığıysa 15,6 milyon °C’dir. Güneşten çıkan enerjinin 2 milyonda 1'i yeryüzüne ulaşır. Güneş’in üç günde yaymış olduğu enerji, dünyadaki tüm petrol, ağaç, doğalgaz, vb. yakıta eşdeğerdir. Güneş ışınları 8,44 dakikada yeryüzüne ulaşır. Güneş dünyaya en yakın yıldızdır. Çekim kuvveti dünya yer çekiminin 28 katıdır.

Güneş yüzeyi kütlesinin %74'ünü ve hacminin %92'sini oluşturan hidrojen, kütlesinin %24-25'ünü[9] ve hacminin %7'sini oluşturan helyum ile Fe, Ni, O, Si, S, Mg, C, Ne, Ca, ve Cr gibi diğer elementlerden oluşur.[10] Güneş'in yıldız sınıfı G2V'dir. G2 Güneş'in yüzey sıcaklığının yaklaşık 5.780 K olduğu, dolayısıyla beyaz renge sahip olduğu anlamına gelir. Günışığının atmosferden geçerken kırılması sonucu sarı gibi görünür. Bu mavi fotonların Rayleigh saçılımının sonucunda yeteri kadar mavi ışığın kırılmasıyla geride sarı olarak algılanan kırmızılığın kalmasıdır.

Tayfı içinde iyonize ve nötr metaller olduğu kadar çok zayıf hidrojen çizgileri de bulunur. V eki (Roma rakamıyla beş) çoğu yıldız gibi Güneş'in de ana dizi üzerinde olduğunu gösterir. Enerjisini hidrojen çekirdeklerinin füzyonla helyuma dönüşmesinden elde eder ve hidrostatik denge içindedir, yani zaman içinde ne genişler ne de küçülür. Saniyede 600 milyon ton hidrojen, helyuma dönüşür. Bu da, Güneş`in her geçen saniye 4,5 milyon ton hafiflemesine yol açar. Güneşteki füzyon olayı sonucunda kızıl kırmızımsı bir alev 15-20 bin km yükselir ve Güneş Fırtınası meydana gelir. Galaksimizde 100 milyondan fazla G2 sınıfı yıldız bulunur. Güneş, galaksimiz içinde bulunan yıldızların % 85%'inden daha parlaktır, bu yıldızların çoğu kırmızı cücelerdir.[11]

Güneş Samanyolu merkezinin çevresinde yaklaşık 26.000 ışıkyılı uzaklıkta döner. Galaktik merkez çevresinde bir dönüşünü yaklaşık 225–250 milyon yılda bir tamamlar. Yaklaşık yörünge hızı saniyede 220 kilometredir (+/-20km/s). Bu da her 1.400 yılda bir, 1 ışıkyılı ve her 8 günde 1 GB'dir. Bu galaktik uzaklık ve hız bilgileri şu anda sahip olduğumuz en doğru bilgilerdir ancak daha fazla öğrendikçe bunlar da gelişebilir.[12]

Güneş günümüzde Samanyolu'nun daha büyük olan Kahraman takımyıldızı ve Yay takımyıldızı kolları arasında kalan Orion Kolu'nun iç kısmında, Yerel Yıldızlararası Bulut içinde yüksek sıcaklıkta dağınık gaz bölgesi olan düşük yoğunluklu Yerel Kabarcık içinden geçmektedir. Dünya'ya 17 ışıkyılı uzaklıkta yer alan en yakın 50 yıldız içinde Güneş, mutlak kadir olarak dördüncü sıradadır (M=4,83)

Konu başlıkları

Genel bakış

Güneş Öbek I, ya da üçüncü nesil yıldızlardandır. Oluşumu yakınlarında bulunan bir süpernovanın şok dalgaları ile tetiklenmiştir.[13] Altın ve uranyum gibi ağır metallerin Güneş Sistemi içinde yaygın olarak bulunması bunu desteklemektedir. Bu elementler büyük olasılıkla süpernova sırasında endergonik nükleer reaksiyonlar esnasında ya da ikinci nesil büyük bir yıldızın içinde nötron emilimi yoluyla dönüşerek oluşmuştur.

Günışığı Dünya'nın ana enerji kaynağıdır. Güneş değişmezi, Güneş'in yeryüzünde doğrudan günışığına maruz kalan birim alana bıraktığı güç miktarıdır. Güneş'ten 1 gökbirimi (GB) ötede Güneş değişmezi yaklaşık olarak metrekareye 1.370 watttır. Günışığının atmosferden geçerken gücünün zayıflaması sayesinde, güneş tepe noktasındayken ve hava açıkken yeryüzüne düşen güç miktarı daha düşüktür ve metrekareye 1.000 watt civarındadır. Bu enerji doğal ve yapay çeşitli yöntemlerle toplanabilir. Bitkiler fotosentez yoluyla günışığını yakalar ve oksijen ile indirgenmiş karbon bileşikleri olarak kimyasal enerjiye çevirir. Güneş enerjisi kullanan ekipmanlar doğrudan ısıtma ya da güneş pili yardımıyla elektrik üretmeye ya da diğer işleri yapmaya yardımcı olur. Petrol ve diğer fosil yakıtlar içinde bulunan enerji çok eskilerde günışığından fotosentez yoluyla çevrilmiştir.

Güneş'ten yayılan morötesi ışık antiseptik özelliklere sahiptir ve âletlerle suyu dezenfekte etmek için kullanılabilir. Aynı zamanda güneş yanığına neden olur ve D vitamini üretilmesi gibi diğer tıbbi etkileri de bulunur. Morötesi ışık Dünya'nın ozon tabakası tarafından oldukça kuvvetli şekilde soğurulur. Dünya'nın farklı bölgelerinde yaşayan insanların deri renginin farklı olması gibi birçok değişik biyolojik adaptasyonun altında yatan neden, enleme göre farklılık gösteren morötesi ışık miktarıdır. [14]

Dünya'dan gözlemlendiğinde Güneş'in gökyüzünde izlediği yol yıl boyunca değişir. Her gün aynı zamanda bakıldığında Güneş'in bir yıl boyunca izlediği yola günizi (analemma) denir ve kuzey/güney ekseni boyunca duran bir 8 şekline benzer. Güneş'in görünen konumunda en önemli farklılık Dünya'nın Güneş'e göre 23,5 derecelik eğikliğinden kaynaklanan 47 derecenin üzerinde kuzey/güney salınımıdır. Ancak bir doğu/batı salınımı da vardır. Doğu/batı salınımının nedeni günberiye gelirken Dünya'nın ivmesinin artması ve uzaklaşıp günöteye giderken hızının düşmesidir. Güneş'in görünen konumunun kuzey/güney salınımı, Dünya üzerinde mevsimlerin oluşumunun ana nedenidir.

Güneş manyetik olarak etkin bir yıldızdır. Güçlü, yıldan yıla değişen ve her on bir yılda bir, güneş maksimumu civarında yön değiştiren bir manyetik alanı destekler. Güneş yüzeyinde güneş lekeleri, güneş püskürtüsü, Güneş Sistemi boyunca madde taşıyan güneş rüzgârının değişiklikleri gibi birçok güneş etkinliğinin arkasında bu manyetik alan bulunur. Güneş etkinliklerinin yeryüzündeki etkileri orta ve yüksek enlemlerde görülen kutup ışıkları ile radyo haberleşmesi ve elektrik hatlarında oluşan kesintilerdir. Güneş etkinliğinin Güneş Sistemi'nin oluşumunda önemli rol aldığı düşünülmektedir. Güneş etkinliği Dünya'nın dış atmosfer tabakasının yapısını değişikliğe uğratır.

Dünya'ya en yakın yıldız olan Güneş, biliminsanları tarafından oldukça kapsamlı olarak araştırılmış olsa da hâlâ birçok sorunun cevabı bulunamamıştır. Günümüzde Güneş ile ilgili en önemli araştırma konuları arasında güneş lekelerinin düzenli devri, güneş püskürtülerinin kaynağı ve fiziği, kromosfer ile korona arasında manyetik etkileşim ve güneş rüzgârının kaynağı bulunmaktadır.

Yaşam çevrimi

Güneş'in yıldız gelişimi bilgisayar modellemesi ve nükleokozmokronoloji yöntemleri kullanılarak ana dizi üzerinde hesaplanan yaşının 4,57 milyar yıl olduğu düşünülmektedir.[15] Hidrojen moleküler bulutun hızla kendi içine çökmesi sonucu üçüncü nesil, Öbek I, T Tauri yıldızı olan Güneş'in doğduğu düşünülmektedir. Bu doğan yıldızın Samanyolu gökadasının çekirdeğinden 26.000 ışıkyılı uzakta hemen hemen dairesel bir yörüngeye girdiği varsayılmaktadır.

Yıldız ana dizi üzerinde yıldız evrimi aşamasının yarı yolundadır. Bu aşamada çekirdekte oluşan nükleer füzyon reaksiyonları hidrojeni helyuma dönüştürür. Her saniye Güneş'in çekirdeğinde 4 milyon ton madde enerjiye çevrilir ve ortaya nötrinolarla radyasyon çıkar. Bu hızla günümüze kadar 100 Dünya kütlesi kadar madde enerjiye çevrilmiştir. Güneş yaklaşık olarak 10 milyar yıl ana dizi yıldızı olarak yaşamına devam edecektir.

Güneş süpernova olarak patlayacak kadar fazla kütleye sahip değildir. Bunun yerine 5-6 milyar yıl içinde kırmızı dev aşamasına girecektir. Çekirdekte bulunan hidrojen yakıtı tükendikçe dış katmanları genişleyecek, çekirdeği büzüşerek ısınacaktır. Çekirdek ısısı 100 MK civarına ulaştığında helyum füzyonu tetiklenecek ve karbon ile oksijen üretmeye başlayacaktır. Böylece 7,8 milyar yıl içinde gezegen bulutsu aşamasının asimptotik dev koluna girerek iç sıcaklığında oluşan kararsızlıklar nedeniyle yüzeyinden kütle kaybetmeye başlayacaktır. Güneş'in dış katmanlarının genişleyerek Dünya'nın yörüngesinin bulunduğu noktaya kadar gelmesi olasıdır ancak son zamanlarda yapılan araştırmalar, Güneş'ten kırmızı dev aşamasının başlarında kaybolan kütle nedeniyle Dünya'nın yörüngesinin daha uzaklaşacağını, dolayısıyla da Güneş'in dış katmanları tarafından yutulmayacağını önermektedir.[16] Ancak Dünya'nın üstündeki suyun tamamı kaynayacak ve atmosferinin çoğu uzaya kaçacaktır. Bu dönemde oluşan güneş sıcaklıklarının sonucunda 900 milyon yıl sonra Dünya yüzeyi bildiğimiz yaşamı destekleyemeyecek kadar ısınacaktır.[17] Bir kaç milyar yıl sonra da yüzeyde bulunan su tamamen yok olacaktır.[18]

Kırmızı dev aşamasının ardından yoğun termal titreşimler Güneş'in dış katmanlarından kurtularak bir gezegensel bulutsu oluşturmasına neden olacaktır. Geride kalan tek cisim aşırı derecede sıcak olan yıldız çekirdeği olacaktır. Bu çekirdek milyarlarca yıl boyunca yavaş yavaş soğuyup beyaz cüce olarak yok olacaktır. Bu yıldız evrimi senaryosu düşük ve orta kütleli yıldızların tipik gelişim senaryosudur.[16][19]

Yapısı

Güneş'in iç yapısı
Güneş'in iç yapısı

Güneş bir sarı cücedir. Güneş Sistemi'nin toplam kütlesinin yaklaşık % 99'unu oluşturur. Güneş hemen hemen mükemmel bir küre şeklindedir, basıklığı yalnızca 9 milyonda birdir,[20] yani kutuplararası çapı ile ekvator çapı arasında bulunan fark yalnızca 10 km.'dir. Güneş plazma hâlindedir ve katı değildir; dolayısıyla kendi ekseni etrafında dönerken kademeli olarak döner, yani ekvatorda kutuplarda olduğundan daha hızlı döner. Bu gerçek dönüşün periyodu ekvatorda 25 gün, kutuplarda 35 gündür. Ancak Dünya Güneş'in etrafında dönerken gözlem noktamız sürekli değiştiği için Güneş'in görünür dönüşü ekvatorda yaklaşık 28 gün kadardır. Bu yavaş dönüşün merkezkaç etkisi Güneş'in ekvatorunda yüzey çekiminden 18 milyon kat daha güçsüzdür. Aynı zamanda gezegenlerden kaynaklanan gelgit etkisi Güneş'in şeklini belirgin derecede etkilemez.

Kayalık gezegenlerde olduğu gibi Güneş'in belirli sınırları yoktur. Dış katmanlarında, merkezinden uzaklaştıkça gaz yoğunluğu üstel olarak azalır. Ancak aşağıda açıklandığı gibi Güneş'in belirgin bir iç yapısı bulunur. Güneş'in yarıçapı merkezinden ışıkyuvarının (fotosfer) kenarına kadar ölçülür. Bu hemen yukarısında gazların önemli miktarda ışık saçamayacak kadar çok soğuk ya da çok ince olduğu katmandır. Işık yuvarı çıplak gözle görülen yüzeydir. Güneş çekirdeği toplam hacminin yüzde 10'una ama toplam kütlesinin yüzde 40'ına sahiptir.[21]

Güneş'in içi doğrudan gözlemlenemez ve Güneş elektromanyetik ışımaya karşı opaktır. Ancak nasıl sismoloji deprem tarafından üretilen dalgaları kullanarak Dünya'nın iç yapısını ortaya çıkarıyorsa helyosismoloji de Güneş'in içinden geçen basınç dalgalarını kullanarak iç yapısını ölçmeye ve görüntülemeye çalışır. Güneş'in bilgisayar modellemesi de iç katmanları araştırmak amacıyla kuramsal bir araç olarak kullanılır.

Çekirdek

Güneş tipi bir yıldızın kesiti. (NASA)
Güneş tipi bir yıldızın kesiti. (NASA)

Güneş çekirdeği merkezden 0,2 güneş yarıçapına kadar uzanır. Yoğunluğu 150.000 kg/m³ (Yeryüzünde suyun yoğunluğunun 150 katı) civarında, sıcaklığı da 13.600.000 kelvin kadardır (yüzey sıcaklığı yaklaşık 5.800 kelvindir). Yakın zamandaki SOHO (Solar and Heliospheric Observatory) misyonunun getirdiği bilgiler çekirdekte işınsal bölgeye doğru daha hızlı bir dönme hızı olduğunu belirtmektedir[22] Güneş'in yaşamının çoğunda enerji, proton-proton zincirleme tepkimesi diye adlandırılan aşamalardan oluşan ve hidrojeni helyuma çeviren nükleer füzyon ile oluşur. Çekirdek, füzyon ile önemli derecede ısı oluşturulan tek yerdir. Yıldızın geri kalanı çekirdekten dışarıya doğru transfer edilen enerjiyle ısınır. Çekirdekte füzyonla oluşan tüm enerji arka arkaya gelen katmanlardan geçerek güneş ışıkyuvarına ulaşır ve buradan uzaya günışığı ve parçacıkların kinetik enerjisi olarak yayılır.

Güneş'te serbest olarak bulunan toplam ~8.9×1056 proton (hidrojen çekirdeği) her saniye 3,4×1038 kadarı helyum çekirdeğine dönüşür, saniyede 4,26 milyon ton madde-enerji dönüşüm oranıyla saniyede 383 yottawatt (3,83×1026 W) ya da 9,15×1010 megaton TNT enerji açığa çıkar. Bu aslında güneş çekirdeğinde 0,3 µW/cm³ ya da 6 µW/kg madde gibi oldukça düşük bir enerji üretimi oranına karşılık gelir. Örneğin insan vücudu yaklaşık olarak 1,2 W/kg ısı üretir, yani bu da Güneş'in birim kütle başına milyonlarca katı demektir. Dünya üzerinde benzer parametreler kullanılarak plazma ile enerji üretilmesi tamamen mantıksız olacaktır çünkü orta kapasitede 1 GW'lık bir füzyon güç santralı bir küp mil hacminde 170 milyar tonluk plazmaya ihtiyaç duyacaktır. Dolayısıyla yeryüzünde bulunan füzyon reaktörleri, Güneş'in içindekinden çok daha yüksek plazma sıcaklıkları kullanmaktadır.

Nükleer füzyon hızı, yoğunluk ve sıcaklığa çok yakından bağlıdır, dolayısıyla çekirdekteki füzyon hızı kendi kendini düzenleyen bir dengeye sahiptir. Biraz yüksek bir füzyon hızı sonucunda çekirdek ısınarak dış katmanlara doğru hafifçe genişleyecek, füzyon hızını azaltacak ve kendini düzenleyecektir. Biraz düşük bir füzyon hızı da çekirdeğin soğumasına ve daralmasına dolayısyla da füzyon hızının artmasına neden olacaktır.

Nükleer füzyon tepkimeleri sonucunda açığa çıkan yüksek enerjili fotonlar (kozmik, gama ve X ışınları) güneş plazmasının yalnızca birkaç milimetresi tarafında emilir ve tekrar rastgele yönlerde çok az enerji kaybederek tekrar yayılır, bu nedenle de ışımanın Güneş'in yüzeyine ulaşması uzun zaman alır. "Foton yolculuk zamanı" 10.000 ilâ 170.000 yıl kadar sürer.[23]

Isıyayımsal dış katmandan şeffaf "yüzey" ışıkyuvara doğru son bir yolculuktan sonra fotonlar görünür ışık olarak kaçar. Güneş'in merkezinde bulunan her gama ışını uzaya kaçmadan önce bir kaç milyon görünür ışık fotonuna dönüşür. Nötrinolar da çekirdekteki tepkimelerde oluşur ama fotonların aksine nadiren madde ile etkileşime girer, dolayısıyla hemen hemen hepsi Güneş'ten hemen kaçabilir. Çok uzun yıllar, Güneş'te üretilen nötrinoların ölçümü kuramlar sonucu tahmin edilenden 3 kat daha düşüktü. Bu tutarsızlık yakın zamanda nötrino salınım etkilerinin keşfiyle çözüldü. Güneş gerçekten de kuramlarca önerilen miktarda nötrinoyu açığa çıkarmakta ancak nötrino algılayıcıları bunların üçte ikisini kaçırmaktadır çünkü nötrinolar kuantum sayılarını değiştirmektedir.

Işınsal bölge

Yaklaşık 0,2 güneş yarıçapından 0,7 güneş yarıçapına kadar bulunan madde, çekirdekteki yoğun ısıyı dışarı doğru temal radyasyonla taşıyacak kadar sıcak ve yoğundur. Bu bölgede ısıyayım yoktur, yükseklik arttıkça madde soğusa da sıcaklık düşümü adyabatik sapma oranından düşük olduğu için ısıyayım oluşamaz. Isı ışınım yoluyla iletilir. Hidrojen ve helyum iyonları foton açığa çıkarır. Fotonlar diğer iyonlar tarafından emilmeden bir miktar yol alır. Bu şekilde enerji dışarı doğru çok yavaş bir hızla ilerler.

Işınsal ile ısıyayımsal bölge arasında "tachocline" adı verilen bir geçiş katmanı bulunur. Burada ışınsal bölgenin tekdüze dönüşüyle ısıyayımsal bölgenin kademeli dönüşü arasında oluşan ani değişiklik büyük bir kırılmaya neden olur.

Isıyayımsal bölge

Güneş'in dış katmanında, yani yarıçapının % 70 aşağısına kadar olan bölgede plazma ısıyı dışarıya doğru ışıma yoluyla iletecek kadar yoğun ve sıcak değildir. Sonuç olarak sıcak sütunların yüzeye yani ışıkyuvara doğru madde taşıdığı ısıyayım oluşur. Yüzeye çıkan madde soğuyunca tekrar ısıyayımsal bölgenin başladığı yere çökerek ışınsal bölgenin üst kısmından daha fazla ısı alır.

Isıyayımsal bölgede bulunan termal sütunlar Güneş'in yüzeyinde belirli bir iz bırakır. Güneş'in iç bölgesinin dış katmanı olan bu bölgedeki türbülanslı ısıyayım küçük ölçekli bir dinamo yaratarak Güneş'in yüzeyinin tamamında manyetik kuzey ve güney kutuplar yaratır.

Işıkyuvar

Işıkyuvar, Güneş'in görünen yüzeyi, hemen altında görünen ışığa opak olduğu katmandır. Işıkyuvarın üzerinde görünen günışığı uzaya serbestçe yayılır ve enerjisi Güneş'ten uzaklaşır. Opaklıkta olan değişiklik görünen ışığı kolayca soğuran H- iyonlarının miktarlarının azalmasıdır. Buna karşın görünen ışık elektronların hidrojen atomlarıyla H- iyonu oluşturmak için tepkimeye girmesiyle oluşur.[24][25] Işıkyuvar on ile yüz kilometre arasındaki kalınlığıyla Dünya üzerinde bulunan havadan daha az opaktır. Işıkyuvarın üst kısmının alt kısmından soğuk olması nedeniyle Güneş ortada kenarlara nazaran daha parlakmış gibi görünür. Güneş'in kara cisim ışınımı 6.000 K sıcaklığında olduğunu gösterir. Işıkyuvarın parçacık yoğunluğu yaklaşık 1023 m−3'dir bu da Dünya havayuvarının deniz düzeyindeki parçacık yoğunluğunun % 1'i kadardır.

Işıkyuvarın ilk optik tayf incelemeleri sırasında bazı soğurma çizgilerinin o zamanlar Dünya üzerinde bilinen hiçbir elemente ait olmadığı anlaşıldı. 1868 yılında Norman Lockyer bunun yeni bir elemente ait olduğu varsayımını öne sürdü ve adını Yunan güneş tanrısı Helios'tan esinlenerek "helyum" koydu. Bundan ancak 25 yıl sonra helyum yeryüzünde izole edilebildi.[26]

Gazyuvar

Tam güneş tutulması sırasında güneş koronası çıplak  gözle görüebilir.
Tam güneş tutulması sırasında güneş koronası çıplak gözle görüebilir.

Güneş'in ışıkyuvar üzerinde bulunan bölümlerine topluca güneş gazyuvarı denir. Radyo dalgalarından görünür ışığa ve gama ışınlarına kadar olan elektromanyetik spektrumda çalışan teleskoplarlarla görünebilir ve başlıca beş bölgeden oluşur: Sıcaklık ineci, renkyuvar, geçiş bölgesi, korona ve günyuvar. Güneş'in dış gazyuvarı sayılan günyuvar Plüton'un yörüngesinin çok ötesine gündurguna kadar uzanır. Gündurgunda yıldızlararası ortam ile şok dalgası şeklinde bir sınır oluşturur. Renkyuvar, geçiş bölgesi ve korona Güneş'in yüzeyinden daha sıcaktır. Sebebi tamamen kanıtlanmasa da kanıtlar Alfvén dalgalarının koronayı ısıtabilecek kadar enerjiye sahip olabileceğini göstermektedir.[27]

Güneş'in en soğuk bölgesi ışıkyuvarın yaklaşık 500 km üzerindeki sıcaklık ineci bölgesidir. Sıcaklık yaklaşık 4.000 K'dir. Bu bölge karbonmonoksit ve su gibi basit moleküllerin soğurma tayflarıyla farkedilebileceği kadar soğuktur.

Sıcaklık ineci bölgenin hemen üzerinde 2.000 km kalınlığında, yayılım ve soğurma çizgilerinin egemen olduğu ince bir katman bulunur. Adının renkyuvar olmasının nedeni, güneş tutulmalarının başında ve sonunda bu bölgenin renkli bir ışık olarak görülmesidir. Renkyuvarın sıcaklığı yükseldikçe artar ve en üst bölgede 100.000 K'e erişir.

Hinode'un Güneş Optik Teleskobuyla 12 Ocak 2007 tarihinde çekilen bu Güneş görselinde değişik manyetik polariteye sahip olan bölgeleri bağlayan plazmanın ipliksi yapısı görünmektedir.
Hinode'un Güneş Optik Teleskobuyla 12 Ocak 2007 tarihinde çekilen bu Güneş görselinde değişik manyetik polariteye sahip olan bölgeleri bağlayan plazmanın ipliksi yapısı görünmektedir.

Işıkyuvarın üzerinde, sıcaklığın çok hızla 100.000 K'den bir milyon K'e çıktığı geçiş bölgesi yer alır. Sıcaklık artışının nedeni bölgede bulunan helyumun yüksek sıcaklıklar nedeniyle tamamen iyonize olarak faz geçişidir. Geçiş bölgesi kesin belirli bir yükseklikte oluşmaz. Daha çok renkyuvarda bulunan iğnemsi ve ipliksi yapıların çevresinde bir ayça oluşturur ve sürekli kaotik bir hareket içindedir. Geçiş bölgesi yeryüzünden kolay görülmez ama uzaydan, elektromanyetik spektrumun morötesi bölümüne kadar hassas cihazlar tarafından kolayca gözlemlenebilir.

Korona hacim olarak Güneş'ten çok daha büyük olan dış gazyuvarı katmanıdır. Korona tüm Güneş Sistemi'ni ve günyuvarını kaplayan güneş rüzgârına pürüzsüzce geçiş yapar. Korona'nın Güneş yüzeyine yakın olan alt katmanlarının parçacık yoğunluğu 1014–1016 m−3'dur. Sıcaklığı birkaç milyon kelvin civarındadır.

Günyuvar ise yaklaşık 20 güneş yarıçapınden (0,1 GB) Güneş Sistemi'nin en son noktasına kadar uzanır. İç sınırlarının tanımı güneş rüzgârının süperalfvénik akışa sahip olması yani bu akışın Alfvén dalgalarının hızından daha fazla olması ile belirlenir. Bu sınırın dışındaki türbülans ya da dinamik kuvvetler Güneş koronasının şeklini etkilemez çünkü bilgi ancak Alfvén dalgalarının hızıyla yayılabilir. Güneş rüzgârı, sürekli olarak günyuvar boyunca dışa doğru akar, Güneş'ten 50 GB ötede gündurguna çarpana kadar güneş manyetik alanını spiral bir şekle sokar. Aralık 2004'te Voyager 1 uzay sondasının, gündurgun olduğuna inanılan bir şok dalgası cephesini geçtiği bildirildi. Her iki Voyager sondası da sınıra yaklaştıkça daha yüksek düzeyde enerji yüklü parçacıkların varlığını kaydetti.[28]

Kimyasal bileşimi

Güneş, atomdan büyük her nesne gibi kimyasal elementlerden oluşmuştur. Bir çok biliminsanı bu elementlerin bolluklarını, gezegenlerdeki elementlerle olan bağlantılarını ve güneşin içindeki dağılımlarını araşırmıştır.

Element bollukları

Bazı elementlerin karakteristik kütle oranları şöyledir[29][30]:

1968 yılında Belçikalı bir biliminsanı lityum, berilyum, ve bor bolluklarının önceden düşünüldüğünden daha fazla olduğunu bulmuştur[31]. 2005 yılında üç biliminsanı neon bolluğunun önceden düşünüldüğünden daha fazla olabileceğini helyosismolojik gözlemlere dayanarak önermişlerdir[32]. 1986'ya kadar Güneş'in helyum içeriğinin Y=0,25 olduğu genel kabul görmüştü ancak bu tarihte iki biliminsanı Y=0,279 değerinin daha doğru olduğunu iddia etmiştir.[33]. 1970'lerde bir çok araştırma Güneş'te bulunan demir grubu elementlerin bolluğuna odaklandı.[34][34] Tek iyonlu demir grubu elementlerinin gf değerlerinin ilk 1962'de bulunmuş[34] ve geliştirilmiş f değerleri 1976'da hesaplanmıştır.[34]. kobalt]] ve mangan gibi bazı demir grubu elementlerinin bolluk tespitleri, çok ince yapıya sahip olmalarından ötürü zordur.[34].

Element dağılımları

Güneş içinde bulunan elementlerin dağılımı bir çok değişkene bağlıdır, örneğin kütleçekimi nedeniyle ağır elementler (örneğin helyum) güneş kütlesinin merkezine yakın dururken, ağır olmayan elementler (örneğin hidrojen) Güneş'in dış katmanlarına doğru yayılır. [30] Özellikle Güneş'in içinde helyumun dağılımı özel olarak ilgi çekmektedir. Helyumun dağılma sürecinin zamanla hızlandığı ortaya çıkarılmıştır. [35] Güneş'in dış katmanını oluşturan ışıkyuvarın bileşimi, içinde bulunan döteryum, lityum, bor ve berilyum dışında, Güneş Sistemi'nin oluşumundaki kimyasal bileşime örnek olarak alınmaktadır.[36]

Güneş döngüleri

Güneş lekeleri ve güneş lekesi döngüsü

Son 30 yılda oluşan güneş döngüsü değişiklikleri ölçümleri.
Son 30 yılda oluşan güneş döngüsü değişiklikleri ölçümleri.

Uygun filtrelemeyle Güneş gözlemlendiğinde ilk dikkati çeken etrafına göre daha soğuk olması nedeniyle daha koyu görüken belirli sınırlara sahip güneş lekeleridir. Güneş lekeleri, güçlü manyetik kuvvetlerin ısıyayımı engellediği ve sıcak iç bölgeden yüzeye doğru enerji transferinin azaldığı yoğun manyetik etkinliğin olduğu bölgelerdir. Manyetik alan koronanın aşırı ısınmasına neden olur ve yoğun güneş püskürtüleri ile koronada kütle fırlatılmasına neden olan etkin bölgeler oluşturur.

Güneş'in üzerinde görünür güneş lekelerinin sayısı sabit değildir ama Güneş döngüsü denen 11 yıllık bir döngü içinde değişiklik gösterir. Döngünün tipik minimum döneminde çok az güneş lekesi görünür ve hatta bazen hiç görünmez. Gözükenler yüksek enlemlerde bulunur. Güneş döngüsü ilerledikçe Spörer yasasının açıkladığı gibi güneş lekelerinin sayısı artar ve ekvatora doğru yaklaşır. Güneş lekeleri genelde zıt manyetik kutuplara sahip çiftler olarak bulunur. Ana güneş lekesinin manyetik polaritesi her güneş döngüsünde değişir, dolayısıyla bir döngüde kuzey manyetik kutba sahip olan leke bir sonraki döngüde güney manyetik kutba sahip olur.

Son 250 yılda gözlemlenen güneş lekelerinin tarihi, ~11 yıllık güneş döngüsü görülebilmektedir.
Son 250 yılda gözlemlenen güneş lekelerinin tarihi, ~11 yıllık güneş döngüsü görülebilmektedir.

Güneş döngüsünün uzayın durumu üzerinde büyük etkisi vardır, ve Dünya'nın iklimi üzerinde de önemli bir etki yapar. Güneş etkinliğinin minimumda olduğu dönemler soğuk hava sıcaklıklarıyla, normalden daha uzun süren güneş döngüleri de daha sıcak hava sıcaklıklarıyla ilişkilndirilir. 17. yüzyılda güneş döngüsünün bir kaç on yıl boyunca tamamen durduğu gözlemlenmiştir; bu dönemde çok az güneş lekesi görülmüştür. Küçük Buz Çağı ya da Maunder minimumu diye bilinen bu dönemde Avrupa'da çok soğuk hava sıcaklıklarıyla karşılaşılmıştır.[37] Daha da önceleri benzer minimum dönemler ağaç halkalarının analiziyle ortaya konmuştur ve bu dönemler normalden daha düşük global hava sıcaklıklarıyla eşleşmektedir.

Olası uzun dönem döngü

Çok yeni bir teori Güneş'in çekirdeğindeki manyetik kararsızlıkların 41.000 ya da 100.000 yıllık periyotlarda değişikliklere sebep olduğunu öne sürmektedir. Bu kuram, buzul çağlarını Milankovitch döngülerinden daha iyi açıklayabilir. Astrofizik alanındaki bir çok kuram gibi bu da doğrudan test edilemez.[38][39]

Kuramsal sorunlar

Güneş nötrino problemi

Uzun yıllar boyunca Dünya üzerinde tespit edilen Güneş'ten gelen nötrinoların sayısı standart Güneş modeline göre tahmin edilenin yarısı ile üçte biri arasında değişmekteydi. Bu aykırı sonuç Güneş nötrino problemi olarak bilinir. Problemi çözmek için öne sürülen kuramlar ya Güneş'in iç sıcaklığını azaltarak daha düşük bir nötrino akısını açıklamaya çalışıyordu, ya da nötrinoların Güneş'ten Dünya'ya gelirken salınıma uğradığını yani varlığı tespit edilemeyen tau ve muon nötrino parçacıklarına dönüştüğünü öneriyordu.[40] 1980'lerde nötrino akısını olabildiğince tam olarak ölçebilmek için Sudbury Nötrino Gözlemevi ve Kamiokande gibi birkaç nötrino gözlemevi kuruldu. Bu gözlemevlerinden gelen sonuçlar sonunda nötrinoların çok küçük durak kütlesi ("rest mass") olduğunu ve gerçekten de salındıklarını gösterdi.[41] Hatta, 2001 yılında Sudbury Nötrino Gözlemevi doğrudan üç tip nötrinoyu da tespit etmeyi başardı ve Güneş'in toplam nötino ışıma oranının standart Güneş modeli ile uyumlu olduğunu ortaya çıkardı. Nötrino enerjisine bağlı olarak Dünya'da görünen nötrinoların üçte biri elktron nötrino tipindedir. Bu oran maddede nötrino salınımını açıklayan, madde etkisi de diye bilinen Mikheyev-Smirnov-Wolfenstein (MSW) etkisi ile tahmin edilen oranla uyumludur. Dolayısıyla problem artık çözülmüştür.

Korona ısınma problemi

Güneş'in optik yüzeyi ışıkyuvar yaklaşık 6.000 K'lik bir sıcaklığa sahiptir. Bunun üzerinde 1.000.000 K'lik güneş koronası bulunur. Koronanın bu aşırı yüksek sıcaklığı, ışıkyuvardan doğrudan ısı iletimi dışında başka bir kaynaktan ısıtıldığını gösterir.

Koronayı ısıtmak için gerekli olan enerjinin ışıkyuvarın altında bulunan ısıyayımsal bölgedeki türbülanslı hareketten kaynaklandığı düşünülmüş ve koronanın nasıl ısındığına dair iki ana işleyiş önerilmiştir. Bunlardan birincisi dalga ısınmasıdır. Isıyayımsal bölgedeki türbülanslı hareket ses, kütleçekim ve manyetohidrodinamik dalgalar üretir. Bu dalgalar yukarı doğru hareket eder ve koronada dağılarak enerjilerini ortamdaki gaza ısı olarak verir. İkincisi ise manyetik ısınmadır. Işıkyuvarında hareketin sürekli olarak oluşturduğu manyetik enerji güneş püskürtüsü gibi büyük ve buna benzer bir çok küçük olayla yayılır.[42]

Şu anda dalgaların etkin bir ısı yayma işleyişi olup olmadığı çok açık değildir. Alfvén dalgaları dışında tüm dalgaların koronaya ulaşmadan önce dağıldıkları ortaya çıkarılmıştır.[43] Alfvén dalgaları da korona da kolayca dağılmamaktadır. Günümüzde araştırma daha çok püskürtü yolu ile ısınma işleyişine doğru yönelmiştir. Korona ısınmasını açıklamak için olası bir görüş sürekli küçük ölçekli püskürtülerdir[44] ve hâlâ araştırılmaktadır.

Sönük genç Güneş problemi

Güneş gelişiminin kuramsal modelleri 3,8 ile 2,5 milyar yıl önce Arkeyan Devir'de Güneş'in bugünkünden 75% daha az parlak olduğunu önerir. Bu kadar zayıf bir yıldız Dünya üzerinde su varlığını destekleyemeyeceğinden hayatında gelişememesi gerekirdi. Ancak jeolojik kayıtlar Dünya'nın tarihi boyunca oldukça sabit bir sıcaklıkta kaldığını gösterir, hatta genç Dünya bugünden biraz daha sıcaktır. Biliminsanları arasında varılan görüşbirliği genç Dünyanın atmosferinde oldukça fazla miktarda sera gazlarının (karbon dioksit, metan ve/veya amonyak) bulunması nedeniyle Güneş'ten gelen az enerjiyi atmosferde hapsettikleri fazla ısıyla dengelediğidir.[45]

Manyetik alan

Güneş'in dönen manyetik alanının gezegenlerarası ortamda bulunan plazma üzerindeki etkisinden kaynaklanan Günyuvar akım katmanı Güneş Sistemi'nin en uç noktalarına kadar uzanır.
Güneş'in dönen manyetik alanının gezegenlerarası ortamda bulunan plazma üzerindeki etkisinden kaynaklanan Günyuvar akım katmanı Güneş Sistemi'nin en uç noktalarına kadar uzanır.[46]

Güneş içinde bulunan tüm madde yüksek sıcaklıklardan ötürü gaz ve plazma hâlindedir. Bu nedenle Güneş ekvatorda yukarı enlemlerde olduğundan daha hızlı döner. Ekvatorda dönüş hızı 25 gün iken kutuplarda 35 günde kendi etrafında döner. Bu kademeli dönüş sonucunda manyetik alan çizgilerinin zamanla kıvrılarak manyetik alan halkaları oluşturması Güneş'in yüzeyinden patlamalarla ayrılarak güneş lekeleri ve güneş püskürtüleri oluşumuna neden olur. Bu kıvrılma hareketi solar dinamonun oluşmasına ve 11 yıllık Güneş döngüsü ile Güneş'in manyetik alanının yön değiştirmesine neden olur.

Güneş'in dönen manyetik alanının gezegenlerarası ortamda bulunan plazma üzerindeki etkisi Günyuvar akım katmanını oluşturur. Bu katman farklı yönleri gösteren manyetik alanları ayırır. Gezegenlerarası ortamda bulunan plazma aynı zamanda Dünya'nın yörüngesinde Güneş'in manyetik alanının kuvvetinden de sorumludur. Eğer uzay bir vakum olsaydı Güneş'in10-4 tesla manyetik dipol alanı uzaklığın kübüyle azalarak 10-11 tesla olacaktı. Ancak uydu gözlemleri bunun 100 kat daha fazla kuvvetli olduğunu ve 10-9 tesla civarında olduğunu göstermektedir. Manyetohidrodinamik (MHD) kuram manyetik alan içindeki iletken bir akışkanın (örneğin gezegenlerarası ortam) yine manyetik alan yaratan elektrik akımları indüklediğini söyler, dolayısıyla bir MHD dinamo gibi hareket eder.

Güneş gözleminin tarihçesi

İlk çağlarda Güneş

İskandinav Bronz Çağ mitolojisinin önemli bir parçası olduğuna inanılan, bir at tarafından çekilen Trundholm Güneş arabası heykeli.
İskandinav Bronz Çağ mitolojisinin önemli bir parçası olduğuna inanılan, bir at tarafından çekilen Trundholm Güneş arabası heykeli.

Gökyüzü'nde bulunan parlak bir disk olan Güneş, ufuğun üzerindeyken gün, ortada yokken de gece olur kavrayışı İnsanoğlu'nun Güneş hakkındaki en temel görüşüdür. Tarihöncesi ve antik çağ dönemi kültürlerde Güneş'in bir tanrı olduğuna ya da diğer doğaüstü olaylara neden olduğuna inanılırdı. Güney Amerika'daki İnka ve günümüz Meksika'sındaki Aztek uygarlıklarının merkezinde Güneş'e tapınma bulunmaktadır. Bir çok antik anıt Güneş ile ilgili fenomenlere göre yapılmıştır. Örneğin taş megalitler oldukça doğru bir şekilde gündönümünü işaret eder. En tanınmış megalitler Nabta Playa, Mısır, İngiltere'de Stonehenge'dedir. Meksika'da Chichén Itzá'da bulunan El Castillo piramidi, ilkbahar ve sonbahar ekinokslarında merdivenlerden yukarı yılanların çıktığını gösteren gölgeler verecek şekilde tasarlanmıştır. Sabit yıldızlara göre Güneş tutulum boyunca zodyaktan geçerek bir yıl içinde tam tur atıyormuş gibi görünür, dolayısıyla da Yunan gökbilimciler tarafından yedi gezegenden biri olarak sayılırdı. Haftanın günlerine de bu yedi gezegenin adı verilmiştir.

Bilimsel bakışla Güneş

Güneş hakkında ilk bilimsel açıklamayı yapan insanlardan birisi Yunanlı filozof Anaxagoras Güneş'in tanrı Helios'un arabası olmadığını Peloponnez'den bile büyük devasa yanan bir metal top olduğunu söylemiştir. Bu sapkın düşünceyi öğrettiği için iktidardakiler tarafından tutuklanmış ve ölüm cezasına çarptırılmıştır ancak Perikles'in araya girmesiyle daha sonra serbest bırakılmıştır. Dünya ile Güneş arasındaki uzaklığı tam olarak ilk hesaplayan insan 3. yüzyılda Eratosthenes olmuştur. Bulduğu 149 milyon km uzaklık günümüzde kabul edilen uzaklık ile aynıdır.

Gezegenlerin Güneş'in etrafında döndüğü kuramı Yunan Samoslu Aristarchus ve Hintliler tarafından önerilmiştir. Bu görüş 16. yüzyılda Nicolaus Copernicus tarafından tekrar ele alınmıştır. 17. yüzyılın başında teleskobun bulunuşuyla güneş lekeleri Thomas Harriot, Galileo Galilei ve diğer gökbilimcileri tarafından detaylı olarak gözlemlenebilmiştir. Galileo, güneş lekelerinin Batı uygarlığında bilinen ilk gözlemlerini yapmış ve bunların Güneş ile Dünya arasında dolaşan küçük gökcisimleri olmadığını aksine Güneş'in yüzeyinde olduğunu varsaymıştır.[47] Güneş lekeleri Han hanedanından beri gözlemlenmekte ve Çinli gökbilimciler tarafından yüzyıllardır kayıtları tutulmaktaydı. 1672'de Giovanni Cassini ve Jean Richer mars olan uzaklığı belirledi, dolayısıyla da Güneş'e olan uzaklığı hesap edebildiler. Isaac Newton bir prizma kullanarak günışığını inceledi ve ışığın birçok renkten oluştuğunu gösterdi.[48] 1800'de William Herschel güneş tayfının kırmızı bölümünün ötesinde kızılötesi ışımayı keşfetti.[49] 1800'lerde Güneş'in spektroskopik incelenmesinde ilerlemeler kaydedilmiştir. Joseph von Fraunhofer tayf üstünde soğurma çizgilerinin ilk gözlemlerini gerçekleştirmiştir. Tayf üzerindeki en kuvvetli soğurma çizgilerinin adı günümüzde Fraunhofer çizgileri olarak bilinir. Güneş'ten gelen ışığı tayfı genişletildiğinde kayıp birçok renk bulunabilir.

Modern bilimsel dönemin başlarında Güneş enerjisinin kaynağı hâlâ bir bilmeceydi. Lord Kelvin, Güneş'in içerisinde barındırdığı ısıyı ışıyan, soğuyan sıvı bir nesne olduğunu önerdi.[50] Kelvin ve Hermann von Helmholtz daha sonra enerji çıktısını açıklamak için Kelvin-Helmholtz işleyişini önerdi. Maalesef ortaya çıkan yaş tahmini jeolojik kanıtların önerdiği bir kaç milyon yıldan çok daha az olan 20 milyon yıl kadardı. In 1890'da güneş tayfında helyumu keşfeden Joseph Norman Lockyer, Güneş'in oluşumu ve gelişimi için kuyrukluyıldızlara dayanan bir varsayım öne sürdü.[51]

1904 yılına kadar kanıtlanmış bir çözüm getirilemedi. Ernest Rutherford Güneş'in enerji çıktısının iç ısı kaynağıyla devam ettirilebileceğini ve bunun da radyoaktif bozulma olabileceğini önerdi.[52] Ancak Güneş enerjisinin kaynağı hakkındaki en önemli ipucunu sağlayan kişi ünlü kütle-enerji denkliği bağıntısı E = mc² ile Albert Einstein olmuştur.

1920'de Arthur Eddington Güneş'in çekirdeğinde bulunan basınç ve sıcaklıkların hidrojeni helyuma dönüştürecek bir nükleer füzyon tepkimesi için yeterli olduğunu, kütledeki net değişiklikten de enerji oluşacağını önermiştir.[53] Güneş'te bulunan hidrojenin baskınlığı 1925 yılında Cecilia Payne-Gaposchkin tarafından doğrulanmıştır. Kuramsal füzyon kavramı 1930'larda astrofizikçiler Subrahmanyan Chandrasekhar ve Hans Bethe tarafından geliştirilmiştir. Hans Bethe, Güneş'in enerjisini sağlayan iki ana nükleer tepkimeyi hesaplamıştır.[54][55]

1957 yeni ufuklar açan, "Yıldızlarda Elementlerin Sentezi" başlıklı bir bilimsel makale Margaret Burbridge tarafından yayımlandı[56] Makale evrende bulunan elementlerin Güneş gibi yıldızların içinde sentezlendiğini kanıtlarıyla gösterdi. Bu açıklamalar günümüzde bilimin önemli ilerlemelerinden biri olarak sayılmaktadır.

Güneş uzay görevleri

Güneş'i gözlemlemek için tasarlanmış ilk uydular NASA'nın 1959 ile 1968 yılları arasında fırlatılan Pioneer 5, 6, 7, 8 ve 9 uzay sondalarıdır. Bu sondalar, Dünya'nınkine benzer bir uzaklıkta Güneş'in yörüngesinde kaldılar ve güneş rüzgârı ile güneş manyetik alanının ilk detaylı ölçümlerini gerçekleştirdiler. Pioneer 9 özellikle uzun bir zaman çalışır durumda kaldı ve 1987'ye kadar data göndermeye devam etti.[57]

1970'lerde Helios 1 uzay sondası ve Skylab Apollo Teleskobu biliminsanlarına güneş rüzgârı ve korona hakkında yeni data sağladı. ABD - Almanya ortak girişimi olan Helios 1 uzay sondası, günberi rotasında Merkür'ün yörüngesine giren bir yörüngedeydi. NASA tarafından 1973'te fırlatılan Skylab uzay istasyonunun içinde Apollo Teleskobu denen bir güneş gözlem modülü de bulunmaktaydı. Skylab Güneş geçiş bölgesinin ve koronanın morötesi ışınımının ilk zamanlamalı göslemlerini gerçekleştirdi. Buluşlar arasında koronodan kütle fırlatılması ve şimdilerde güneş rüzgârıyla yakın ilişkisi olduğu bilinen korona delikleri olmuştur.

1980'de NASA tarafından Solar Maksimum uzay uydusu fırlatıldı. Bu uzay aracı yüksek güneş etkinliği sırasında güneş püskürtülerinde ortaya çıkan gamma ışını, X ışını ve UV ışımasını gözlemlemek için tasarlanmıştı. Ancak fırlatmadan bir iki ay sonra bir elektronik hata sonucu sonda bekleme moduna girdi ve sonraki üç yılını bu şekilde geçirdi. 1984 yılında uzay mekiği Challenger STS-41C görevi uyduyu bularak onardı. Haziran 1989'da Dünya atmosferine girene kadar Solar Maximum sondası binlerce korona görseli çekebildi.[58]

Japonya'nın 1991'de fırlatılan Yohkoh (Günışığı) uydusu X ışını dalgaboyunda güneş püskürtülerini gözlemledi. Sondadan gelen datalar sayesinde biliminsanları değişik tipte güneş püskürtülerini tanımlayabildiler. Ayrıca doruk etkinlik bmlgelerinden uzakta olan koronanın da eskiden düşünüldüğünün aksine daha dinamik ve etkin olduğu ortaya çıkarıldı. Yohkoh tam bir güneş döngüsünü gözlemledi ancak 2001de güneş tutulması sırasında bekleme moduna girdi ve Güneş ile olan bağlantısını yitirdi. 2005 yılında atmosfere yeniden girerken yokoldu.[59]

Günümüze kadar en önemli güneş uzay görevlerinden biri Avrupa Uzay Ajansı ile NASA ortak projesi olan ve 2 Aralık 1995'te fırlatılan SOHO (Solar and Heliospheric Observatory) görevidir. Başlangıcında iki yıllık bir görev için planlanan SOHO 2007 itibariyle on yılı aşkın bir süre etkinlik göstermiştir. Çok yararlı olduğunu kanıtlamasından 2008'de fırlatılacak devam görevi Solar Dynamics Observatory planlanmıştır. Dünya ile Güneş arasında Lagrange noktasına yerleştirilen SOHO fırlatıldığından beri değişik dalgaboylarında Güneş'in görüntüsünü sürekli olarak iletmektedir. Doğrudan Güneş'i gözlemleyebilmesinin yanı sıra SOHO özellikle Güneş'in yanından geçerken yanan bir çok küçük kuyrukluyıldız dahil bir çok kuyrukluyıldızın keşfine yaradı.[60]

Güneş'in güney kutbu. STEREO güneş gözlem misyonu tarafından çekilmiştir. Görselin sağ alt kısmında fırlatılan madde görülebilir.
Güneş'in güney kutbu. STEREO güneş gözlem misyonu tarafından çekilmiştir. Görselin sağ alt kısmında fırlatılan madde görülebilir.

Tüm bu uydular Güneş'i tutulum düzlemi üzerinden gözlemlemiştir, yani yalnızca ekvator bölgelerinin detayları mevcuttur. 1990 yılında Güneş'in kutup bölgelerini incelemek için Ulysses uzay sondası fırlatıldı. Önce Jüpiter'e kadar giderek burada 'sapan' etkisinden faydalanarak tutulum düzleminin üstünde bir yörüngeye oturdu. Tesadüfen çok yakından 1994 yılında Shoemaker-Levy 9 kuyrukluyıldızının Jüpiter ile çarpışmasını izleyebildi. Ulysses planlanan yörüngesine girdikten sonra güneş rüzgârını gözlemlemeye ve yüksek enlemlerde manyetik alan kuvvetini belirlemeye başladı. Yüksek enlemlerden çıkan güneş rüzgârının beklenenden daha düşük olarak 750 km/s hızla hareket ettiğini buldu. Ayrıca yüksek enlemlerden çıkan, galaktik kozmik ışınlar saçan büyük manyetik dalgaların varlığını keşfetti.[61]

Işıkyuvar'da bulunan elementlerin bolluğu günışığı tayflarından çok iyi bilinmektedir ancak Güneş'in içinin bileşimi çok iyi anlaşılamamıştır. Bir güneş rüzgârı örnek getirme görevi için kullanılan Genesis uzay aracı, gökbilimcilerinin güneş maddesi bileşimini doğrudan ölçebilmesi için tasarlanmıştı. Genesis 2004 yılında Dünya'ya döndü ancak iniş sırasında paraşütlerinden biri açılmadığı için zarar gördü. Aşırı derecede zarara rağmen bazı işe yarar örnekler ele geçirildi ve analizleri devam etmektedir.

STEREO (The Solar Terrestrial Relations Observatory) görevi Ekim 2006'da fırlatılmıştır. İki eşlenik uzay aracı Güneş'in ve koronadan kütle fırlatımı gibi olayların stereoskopik fotoğrafını çekebilecek şekilde yörüngeye sokulmuşlardır.

Güneş gözlemi ve göze gelen zarar

Yeryüzünde, bir fotoğraf makinesi lensinden göründüğü şekliyle Güneş.
Yeryüzünde, bir fotoğraf makinesi lensinden göründüğü şekliyle Güneş.

Günışığı çok parlaktır ve çıplak gözle kısa süreler için Güneş'e bakmak acı verici olabilir ama özel olarak normal gözler için zararlı değildir.[62][63] Güneş'e doğrudan bakıldığında gözde yıldız gibi parlamalar oluşur ve geçici olarak yarı körlüğe sebep olur. Aynı zamanda retinaya 4 milliwatt günışığı düşmesine, böylece retinanın hafifçe ısınarak, potansiyel olarak gözlerin zarar görmesine neden olur.[64][65] UV ışınlarına maruz kalma sonucu aşamalı olarak gözün lensi yıllar sonra sararır ve katarakt oluşumuna neden olabilir.[66] Doğrudan Güneş'e bakıldığında yaklaşık 100 dakika sonra UV kaynaklı güneş yanığı benzeri lezyonlar retina üzerinde oluşur, özellikle morötesi ışınlar yoğun ise.[67][68] Gözler genç ise durum daha da kötüleşir, çünkü yaşlanan gözlerden daha fazla UV'den etkilenir.

Güneş'i dürbün gibi ışığı yoğunlaştıran optik cihazlarla izlemek eğer UV ışınları filtre edecek uygun bir filtre yoksa çok zararlıdır. Filtresiz dürbünler çıplak gözün aldığından 500 kat daha fazla enerjinin retinaya gelmesini sağlayacağından retina hücrelerinin hemen ölmesine neden olur. Öğlen güneşine filtresiz dürbünle çok kısa bir süre bakmak bile kalıcı körlüğe neden olur.[69] Güneş'i izlemenin güvenli bir yolu teleskop kullanarak görüntüsünü bir ekrana yansıtmaktır.

Kısmi güneş tutulmalarını izlemek zararlıdır, çünkü gözbebekleri aşırı yüksek kontrasta uyumlu değildir. Gözbebeği ortamda bulunan toplam ışık miktarına göre genişler, ortamda bulunan en parlak nesneye göre değil. Kısmi tutulmalarda günışığının çoğunluğu Güneş'in önünden geçen Ay tarafından engellenir ama ışıkyuvarın örtülmemiş kısımlarının yüzey parlaklığı normal günlerdeki ile aynıdır. Ortamın loş olması nedeniyle gözbebeği ~2 mm'den ~6 mm'ye büyür, ve günışığına maruz kalan her retina hücresi tutulmayan normalin on katı ışık alacaktır. Bu gözlemcinin gözünde kalıcı kör noktalara neden olacak şekilde hücreleri öldürebilir ya da hücrelere zarar verebilir.[70] Hemen acı oluşmadığı için tecrübesiz gözlemciler ve çocuklar bu zararın farkına varamaz, bir kişinin görüşünün bozulması hemen farkedilmez.

Gündoğumu ve günbatımı esnasında günışığı Rayleigh saçılımı ve Mie saçılımı nedeniyle azalır. Dünya atmosferinden geçerken aldığı uzun yol nedeniyle çıplak gözle rahat bir şekilde seyredilebilecek kadar sönüktür. Pus, duman, toz ve yüksek nem ışığın azalmasına yardımcı olur.

Güneşi izlemek için kullanılan ışık azaltıcı filtreler bu nedenle tasarlanır. Uydurularak yapılan filtreler UV ve IR ışınları geçirebilir dolayısıyla yüksek parlaklık düzeylerinde göze zararlı olabilir. Teleskoplarda kullanılan filtreler lensin ya da açıklığın üzerinde olmalı ama oküler mercekte olmamalıdır. Çünkü emilen günışığından kaynaklanan aşırı ısı bu filtrelerin aniden çatlamasına neden olabilir. 14 numaralı kaynak camı kabul edilebilir bir güneş filtresidir ama negatif siyah fotoğraf filmi değildir çünkü çok fazla kızılötesi ışını geçirir.

Yayın yok.
Yayın yok.